

High Force, Low Voltage Nano-scale Capacitor Actuator Performance in Dilute Salt Solutions

Lisanne de Groot, Carnegie Mellon University James Pikul, Singh Center for Nanotechnology, University of Pennsylvania

Soft robotics provide versatile robots

https://tfwiki.net/wiki/Optimus_Prime_(G1)

http://techgenmag.com/2014/07/soft-robotics/

https://harvardmagazine.com/2011/12/soft-robots-starfish-variation

Flexible robots require new actuators

Dielectric elastomeric actuators require high voltages and can break

Smaller actuators require less voltage, but must be redesigned

Ions accumulate to charged surfaces to form a double layer in solutions

Counterions accumulate on charged surface

Modelling double layers gives an idea of the forces involved

Theoretical electric field determined from potential energy equation

To get the force, we first need the capacitance and electric field:

F = E * QQ = C * V

• The electric field can be found: $E(h) = -\nabla \psi$ $= V\kappa(e^{-\kappa h} + e^{\kappa(d-h)})$

$$C = \varepsilon \varepsilon_0 \frac{A}{d} * \frac{1}{2}$$
$$= 2.89 * 10^{-7} F$$

Electric field evaluated at the midpoint to get the force

Force on plate

Force increases with voltage, and changes shape with concentrations

Preliminary actuators made with gold on polyimide

Resistance measurements tell insulating properties of alumina/hafnia layer

If a resistance is measured, the alumina/hafnia layer is shorting

Higher resistance -> better insulator.

Material	Thickness (nm)	Resistance (Ω)
Alumina	30	9.6 ± 1.7 (N=6)
Hafnia	15	10.0 ± 1.7 (N=6)
Alumina	20	14.2
Hafnia	20	8.2 ± 2.4 (N=6)
Alumina	60	Not measurable

Samples had uneven and dirty coatings

By cleaning the samples in between each step, surface became somewhat cleaner

Samples without cleaning

Samples with cleaning

Summary and future directions

•So far:

- developed model for determining the expected force
- Fabricated electrode sheets
- •Clean up electrode surface
- •Test in air
- Test in salt solution

Acknowledgements

Thanks to:

- James Pikul and the Pikul lab
- Kristin Field
- Meredith Metzler, Hiromichi Yamamoto, Matt Brukman, and the Singh Center staff
- NSF NNCI Award #1542153