Development of a MEMS Tool to Study the Physics of Water and Ice

Kody Whisnant Chemical Engineering, Wayne State University

Abraham Stroock & Hanwen Lu Chemical and Biomolecular Engineering, Cornell University

Freezing Damage

Cornell University Cornell NanoScale Science and Technology Facility

https://www.flickr.com/photos/roadscanners/11045409695/in/photostream/ http://www.pavementinteractive.org/frost-action/

Phase Behavior

.

Imaging Challenges

- Nanoconfinement
- Phase Contrast

Nanoconfinement

Cornell University Cornell NanoScale Science and Technology Facility

Direct visualization of fluid dynamics in sub-10 nanochannels. Nanoscale, 2017, 9, 9556

Cornell University Cornell NanoScale Science and Technology Facility

Direct visualization of fluid dynamics in sub-10 nanochannels. Nanoscale, 2017, 9, 9556

Cornell University Cornell NanoScale Science and Technology Facility

Direct visualization of fluid dynamics in sub-10 nanochannels. Nanoscale, 2017, 9, 9556

Nitride Thickness:
 130–220 nm

Approach

Optical Channel Development

Approach

Optical Channel Development

Channel Testing

Si Wafer

Glass Wafer

Si Wafer

LPCVD

- Si₃N₄
 Deposition
- PECVD
 - Oxide Deposition
- Photoresist

• Si Wafer

LPCVD

Si₃N₄
 Deposition

PECVD

- Oxide Deposition
- Photoresist

- Contact Aligner
 - Pattern
 Nano-
 - Channels
- 30:1 BOE
 - Wet Etch
- Strip Resist

Cornell University Cornell NanoScale Science and Technology Facility

Photoresist

Glass Wafer

PECVDA-Si Deposition

Photoresist

- **Contact Aligner**
 - Pattern Micro-Channels

Glass Wafer

PECVD

- A-Si Deposition
- Photoresist

- Contact Aligner
 - Pattern Micro-Channels

SF₆/O₂ & HF

- Etch
 Channels
- Strip Resist

- SF₆/O₂ Etch
 - Remove A-Si

A-Si

Cornell University Cornell NanoScale Science and Technology Facility

Photoresist

• Dice & Laser Cut

Cornell University Cornell NanoScale Science and Technology Facility

SiO₂

A-Si

Final Device

SEM

Channel Height: ~44 nm Si_3N_4 Layer Thickness: ~206 nm

Cornell University Cornell NanoScale Science and Technology Facility

Control Valve

Channel Imaging

Acknowledgements

- National Science Foundation
- National Nanotechnology Coordinated Infrastructure
- Cornell NanoScale Science & Technology Facility
 - NSF Grant no. ECCS-1542081
- Abraham Stroock
- Hanwen Lu
- Lilia Escobedo
- Melanie-Claire Mallison

 CNF Staff: Chris Alpha, Alan Bleier, Garry Bordonaro, Edward Camacho, Jeremy Clark, Jerry Drumheller, Phil Infante, Tom Pennell, Beth Rhoades, John Treichler, Aaron Windsor, and Sam Wright

Cornell

University

