

Nanofabrication clean room facility at Nebraska Center for Materials & Nanoscience

Jiong Hua

National Nanotechnology Coordinated Infrastructure (NNCI) Nebraska Nanoscale Facility (NNF)

May 24, 2016

* Nebraska Center for Materials and Nanoscience

- Founded 1988
- 100 faculty members in 12 departments
- Organizes collaborative research (MRSEC, Keck, etc.)
- Operates six Central Facilities
- Operates an Education-Outreach Program
- Runs weekly seminar series

- * New Nano Building (2012)
 - \$7M funding from NIST grant
 - \$5M gift to UNL from Voelte-Keegan Family

N Present Central Facilities at Nebraska Center for Materials and Nanoscience

Nanofabrication Cleanroom

Nanomaterials & Thin-Film Preparation

Nanoengineered Materials & Structures

Electron Microscopy

X-Ray Structural Characterization Scanning Probe and Materials Characterization

Nanofabrication Clean Room Facility

Dry etching

Wet etching

Lithography

Metrology

Key features:

- Certified class 10,000 (ISO-7)
- 4,000 sq. ft. area with 2,500 sq. ft. workspace
- Four functional bays: Lithography, Etching, Deposition, Metrology
- Real time monitoring system on harzardous gases, airborne particle concentration, temperature, air pressure, etc.

NCMN Nanofabrication clean room facility: Dry Etching

Ion Beam milling/Sputtering System (Intlvac Nanoquest-I)

Deep Sillicon Etching System (Oxford PlasmaPro 100 Estrelas)

Reactive Ion Etching (RIE/ICP) System (Trion Minilock-Phantom III RIE/ICP)

Ion Beam Milling/Sputtering System

Ion Beam milling/Sputtering System (Intlvac Nanoquest-I)

Key features:

- Versatile R&D ion beam development platform for both thin film milling and deposition
- UHV chamber with base pressure in 10⁻⁹ Torr range
- One 14cm ion source for ion beam milling (Beam current: 0-500mA at 1200V; Ion energy: 100-1200eV)
- One 4cm ion source for ion beam sputtering (Beam current: 0-150mA; Ion energy: 100-1200eV, 3x 4" targets;)
- 8x 2" magnetron sputtering guns (1 RF and 2 DC power supplies) allowing co-sputtering
- Single axis motion stage supports multi-incident angle operation and the maximum wafer size up to 4" (100mm).
- Three working gas (Ar, N₂, O₂) supports reactive sputtering
- The Ending Point Detection system(SIMS) allows users to define etch end point and mount of over etch

N Ion beam milling application 1: Ti nano-pillars

Ti nano-pillars fabricated with Ion beam milling

Condition: Ion energy: 1200eV, Beam current: 200mA Mask: AZ1518(2um), Etch time: 10min

ION Ion beam milling application 2: MTJ Device

Side view:

Picotesla Magnetoresistive Sensor

Condition: Ion energy: 200eV, Beam current: 50mA Mask: AZ3312(1.2um) Etch time: 3min

Deep Sillicon Etching System

Deep Sillicon Etching System (Oxford PlasmaPro 100 Estrelas)

Key features:

- Offering high aspect ratio Si etch solutions for multiple applications
- Run Bosch and Cryo etch process (temperature range: -140°C to 60°C)
- Max RF power: 3000 W ICP; 300W RIE
- 6 Gas Channels: Ar, CF₄, C₄F₈, CHF₃, O₂, SF₆
- Wafer size: 4" (100 mm) and 3" (75mm)

Silicon templates for microfluidic channels Condition: ICP: 700W, RF: 8W(30VDC), Temp: -110°C, Mask: Shipley S1813(1.5um) Pressure: 10mTorr (SF₆: 40sccm, O₂: 5.5sccm) Etch rate: 3.6um/min, Etch time: 5min, Selectivity: 28:1,

Reactive Ion Etching (RIE/ICP) System

Reactive Ion Etching (RIE/ICP) System (Trion Minilock-Phantom III RIE/ICP)

Key features:

- Plasma etch system with ICP and RIE source
- Max power: 1000 W ICP; 600W RIE
- 6 Gas Channels: Ar, BCl₃, Cl₂, CF₄, O₂, SF₆
- Max wafer size: 12 inch (300 mm)

Polystyrene beads etching Condition: RIE: 100W, Temp: 25°C, Pressure: 20mTorr (O₂: 50sccm) Mask:N/A, Etch time: 2min

NCMN Nanofabrication clean room facility: Dry Etching (summary)

Wafer size	Up to 4"(100mm)	Up to 4"(100mm)	Up to 12"(300mm)
Temperature range	25°C	-140°C to 60°C	25°C to 400°C
Working gases	Ar, O ₂ , N ₂	Ar, CF ₄ , C ₄ F ₈ , CHF ₃ , O ₂ , SF ₆	Ar, BCl ₃ , Cl ₂ , CF ₄ , O ₂ , SF ₆
Etch capability	All type of materials	Polymers, Si and Si based Semiconductors	Polymers, Metals and Si based semiconductors
Restrictions	Low etch rate	Limited etch capability	Poor temperature control and uniformity
Chamber cleaning	Scrubber and Vacuum	O ₂ plasma	O ₂ plasma

NCMN Nanofabrication clean room facility: Lithography

E-Beam Lithography System

- Composed with Zeiss SEM and Raith pattern generator
- Energy of electrons: 0.1 30 keV
- Minimum pattern feature size: ~ 20 nm
 Overlay accuracy: ~ 1 μm
- Field stitching error \leq 50 nm

SET device

Nano channel

Mask Aligner System for Optical Lithography (SUSS MJB-4)

- Instrument for high resolution optical lithography
- Minimum pattern feature size: 0.8µm
- Max wafer size: 4 inch (100mm)

Josephson Junction array

Maskless Laser Lithography System (Heidelberg DWL66)

- high resolution pattern generator for direct writing on wafers
- Minimum pattern feature size: 0.6µm
- Overlay accuracy: ~0.2 μm

This image cannot

MTJ device

currently be displayed.

Max wafer size: 6 inch (150mm)

This image cannot currently be displayed.

Hall bar

NCMN Nanofabrication clean room facility: Focused Ion Beam

Focused Ion Beam (FIB) workstation (FEI Strata 200)

- Single Ga Ion beam system
- Accelerating energy: 5 30 keV
- Beam current range: 1 pA 11.5 nA
- Pattern resolution: ~ 50 nm
- Two complimentary GIS: Pt deposition and selective carbon milling

Sharpening Tips

Hole-array on Tip

Crossing section on stainless steel

Double-slit on SiN membrane

NCMN Nanofabrication clean room facility: Thin Film Deposition

Electron beam evaporation system ATC ORION 8000-E (AJA International)

- Base pressure: ~ 2.10⁻⁹ Torr
- 4 evaporation sources
- Substrate heater: 850°C max
- substrate rotation
- Load lock 1 sample
- Quartz crystal thickness monitor

AJA Sputtering System ATC 2000-F (AJA International)

- Base pressure ~ 5.10⁻⁸ Torr
- Gas environment: Ar & O₂
- 2RF (300 W) and 2DC (750 W) supplies.
- Sputtering source: 5 in total.
- Substrates up to 4 inches in diameter
- Substrate heater: 850° C max
- Substrate rotation and RF bias
- Quartz crystal thickness monitor
- 6 sample Load lock

TEM image of L1₀ (Fe,Co)Pt-based magnetic films deposited by AJA sputtering system

NCMN Nanofabrication clean room facility: Metrology

Optic microscope (Nikon L200)

Reflective Film Thickness Measurement System (Filmetrics F40)

Stylus Profliometer (Dektak XT)

Four-probe Resistivity Measurement Stand (Lucas 302)

MTJ device optic image

Alq₃ film thickness measured by Filmtrics SiN film thickness measured by Dektak

Thank You I