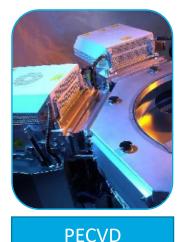
End-point Detection for Plasma Etching – *Knowing When to Stop*

Joshua D. Perlstein Lead Applications Engineer (Deposition) NNCI Etch Symposium 2022 @ UPenn

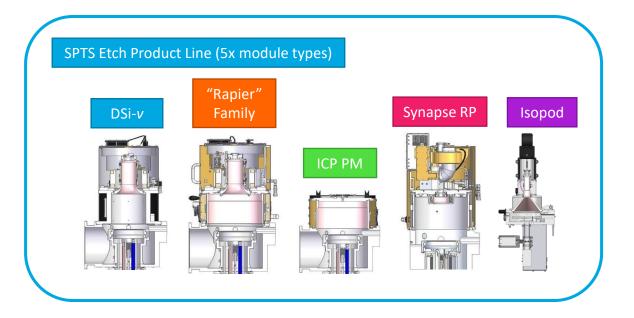
About The Presenter: Joshua Perlstein

- Currently a lead applications engineer for SPTS North America (deposition products), I went to school at the University of Central Florida where I got degrees in mechanical engineering (BS) and materials science (MS); I worked with optical thin films and device fabrication heavily in graduate school.
- I have worked previously as a process development engineer, manufacturing equipment engineer, and field service engineer.
- I like airplanes, houseplants, the great outdoors, travel, and watching wafers move around a fab.


About SPTS Technologies

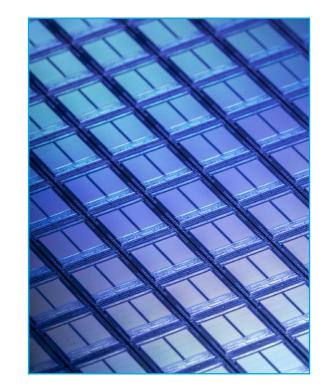
A leading manufacturer of etch and deposition process solutions and equipment for the semiconductor manufacturing industry

- SPTS Technologies is part of the Electronics, Packaging and Components (EPC) Group of KLA Corp.
- Global presence operate across 19 countries
 - Headquartered in the UK
 - Manufacturing sites in UK and US
- Support our customers with local Sales and Service teams



Contents

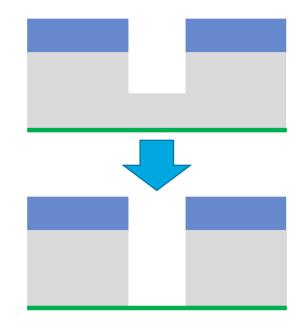
- What is End-point Detection (EPD)?
- Why do we need EPD?
- What methods exist for EPD?
- 'Troublesome' etches?



- Examples of EPD for Critical Etch Applications
 - Parametric
 - Optical Emission Spectroscopy (OES)
 - Including Claritas[™]
 - Reflectance & Interferometry
 - White Light
 - Visible LASER
 - Near infrared LASER
 - Image Capture ReVia[®], Ascent[™]
- Summary table of EPD methods
- Conclusions

What is End-point Detection?

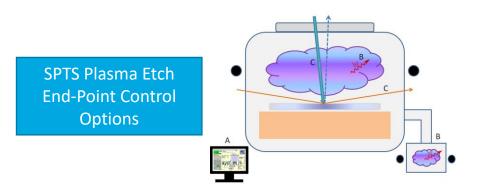
- Plasma Etching
 - Critical step in fabrication of all semiconductor devices and most other microfabricated devices.
- Important to know when the process is complete
- Techniques employed to detect the process completion point, or a point in the process prior to completion, are referred to as 'End-point Detection (EPD)'



Why Do We Need EPD?

- Time based etching has limitations
 - Variations in film thicknesses
 - Variations in film composition or density
 - Variations in etch rate from chamber condition
- End-point Detection offers benefits
 - Etch time can 'float' reducing test wafers
 - Track certain layers or depths
 - Modify process eg when we reach a stop layer
 - Improve process repeatability
 - Prevents under-etching \rightarrow eliminating scrap or re-work
 - Prevents over-etching \rightarrow better CD control, better sidewall quality

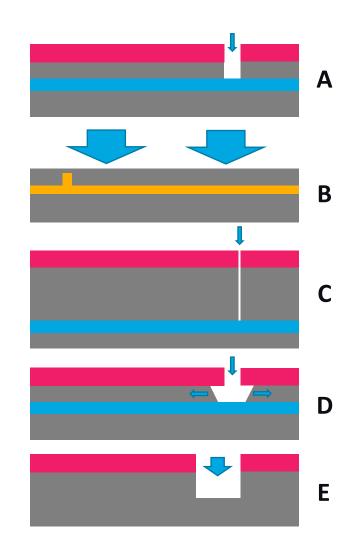
better under-layer loss, better notching better throughput, better device performance better Yield


EPD selling price can be 8-12% of the Process Module But ROI can be very short 99% of all Etch PMs shipped have an EPD of some sort

6 KLA Non-Confidential | Unrestricted

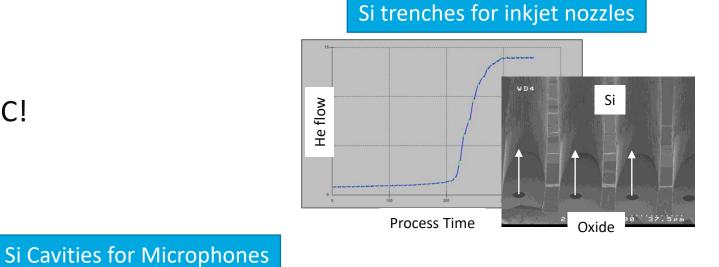
End-point Detection Methods

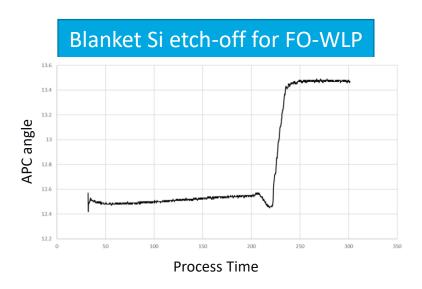
- EPD requires an aspect of the process that changes with time
 - Either as the etch depth increases
 - Or as different layers in the wafer are reached
- Three categories of EPD
 - Etch system monitoring 'Parametric' (A)
 - Plasma or gas monitoring (B)
 - In-situ wafer monitoring (C)



	Method	Monitors	Based on
А	Parametric	System	APC angle or He flow
В	Optical emission spectroscopy (OES)	Plasma	Glow from plasma
	Claritas	i lusinu	Re-ignited glow from plasma
С	WL Reflectance		Reflection
	WL Interferometry	Wafer	Broad area interferometry
	LASER interferometry		Small spot interferometry
	NIR		Broad area interferometry
	ReVia, Ascent		Wafer vision

'Troublesome' Etches

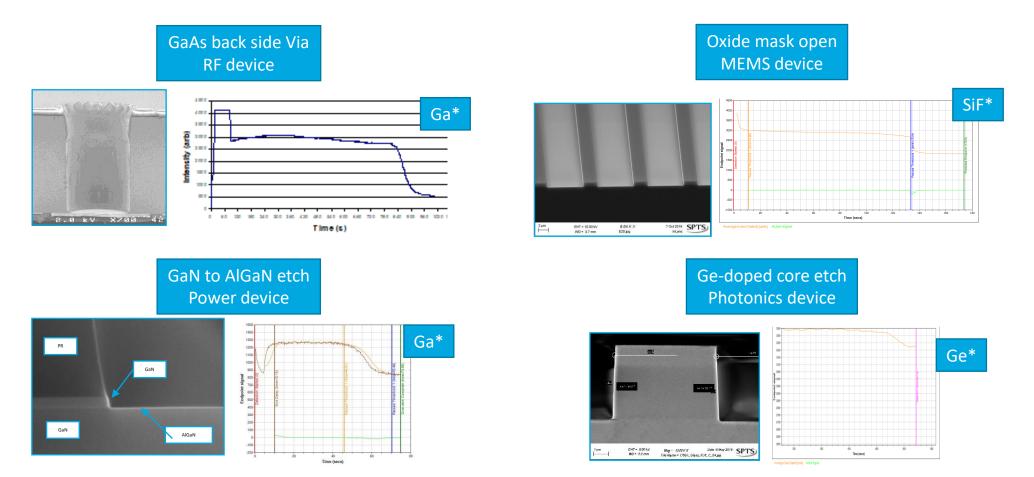

- A. Very low open areas
 - <1%, eg. Back Side Vias (Si, GaAs, SiC)</p>
- **B.** Very high open areas
 - >99%, eg. Via Reveal
- C. High aspect ratios
 - eg. SOI at 50:1 AR
- D. Etching doesn't stop
 - eg. tapered TSVs
- E. Blind etches with no under-layer
 - eg. Bulk thinning or Power Trenches
- Wafers/chemistry prevent standard methods
 - eg. Ni or Cu masked SiC Via etching (SiF* optical emission is supressed by presence of metal mask)



Parametric EPD

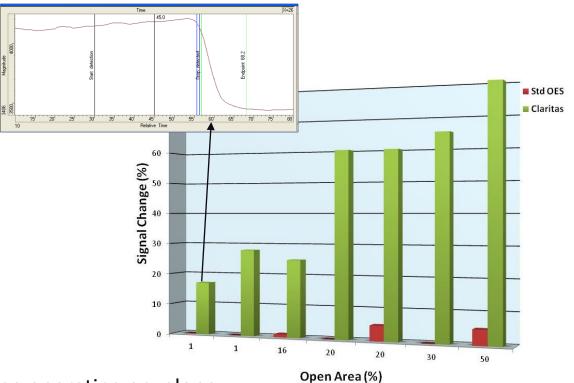
- Based on Etch system datalogs FOC!
- APC valve position or He back side pressure flow rate

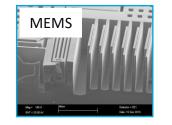
Si Oxide 10¹¹⁰⁰ 2017 2017 2017 Process Time

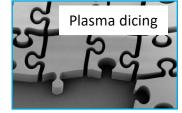

Plasma or Gas Monitoring

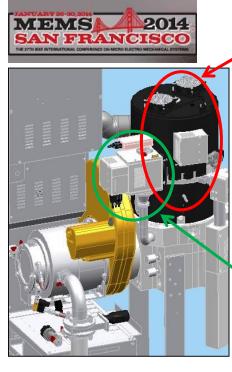
Technique	Technique Cost Benefits (+)		Disadvantages (-)	
LASER Induced Fluorescence (LIF)	\$\$\$\$	 Provides some detail of plasma chemistry 	 Limited to species that fluoresce Difficult to interpret data Affected by plasma glow 	
Mass Spectroscopy (e.g. RGA)	\$\$\$	 Analyses all species 	 Intrusive to plasma Needs high vacuum (differential pumping) Species are ionised/cracked before detection Difficult to interpret data Low filament lifetime in chemical plasmas 	
Optical Emission Spectroscopy (OES)	\$\$	Widely applicableEasy to use & interpret	 Limited to species that are emitting light 	
Langmuir Probe	\$	• Easy to use	 Intrusive to plasma Limited to ion & electron information No chemistry information Difficult to interpret 	

• OES is preferred method for Plasma Monitoring

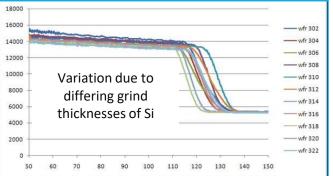

Optical Emission Spectroscopy (OES)

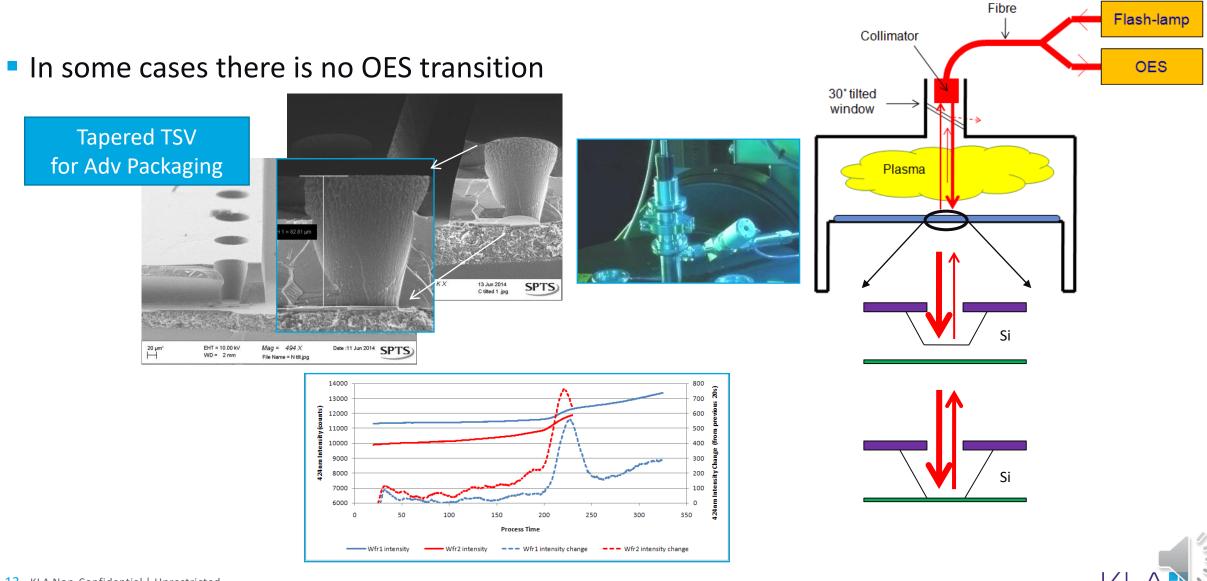

Also used for inter-wafer cleans of the process module


Claritas[™] (Patented)

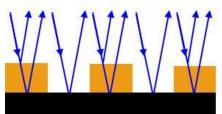


- Large operating envelope
- For all DRIE etches to a stop layer
- Detection limit <0.05% OA

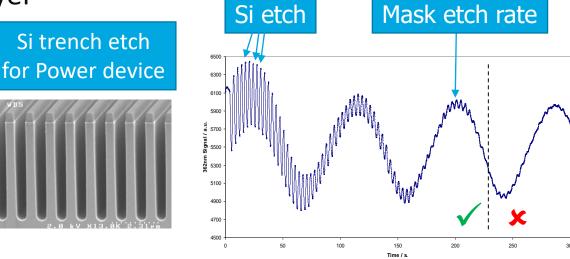



<u>Etch Chamber</u> Rapid fluorination of SiF to SiF₄ Unable to 'see' SiF*

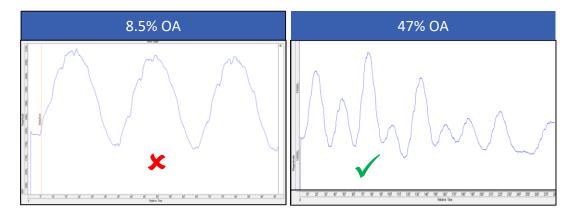
<u>Claritas Unit</u> High concentration of SiF₄ cracked to reform SiF* Easily detected



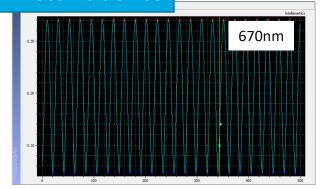
White Light Reflectance



White Light Interferometry


Used for blind etches – no under-layer

- ~2cm spot size means no requirement for dedicated feature on wafer
- Real time trench depth read-out on every wafer



Visible LASER Interferometry

Mesa etch for VCSEL device

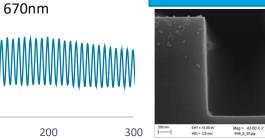
BCB blanket etch for Photonic device

InP etch for Photonics device

980nm 980nm

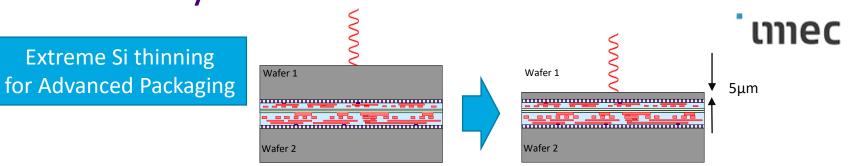
100

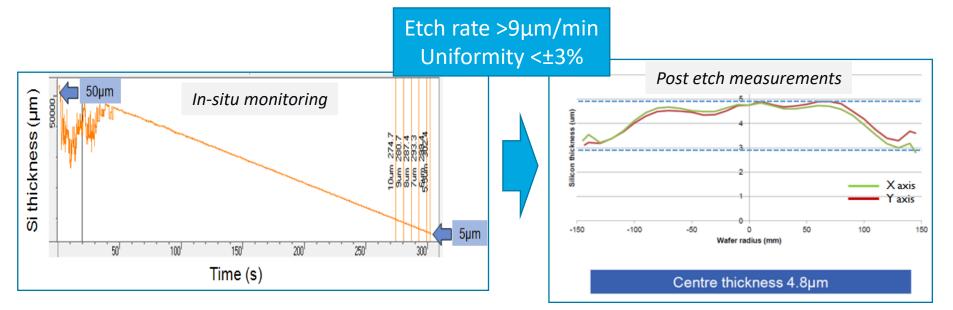
Etch time / s


LASER spot ~20µm diameter Target 'window' typically required at wafer centre Wafer placement accuracy means window is 300-350µm wide Optional <u>Pattern Recognition</u> software reduces window to 100-250µm

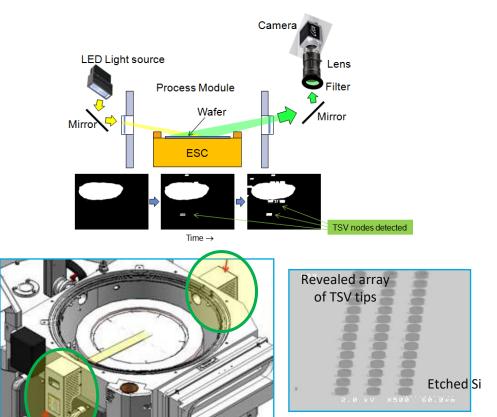
Intensity

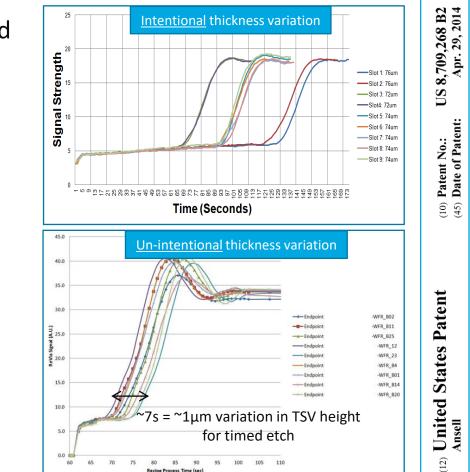
0


SiC trench etch for Power device

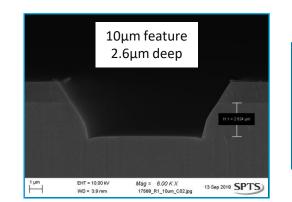


NIR LASER Interferometry

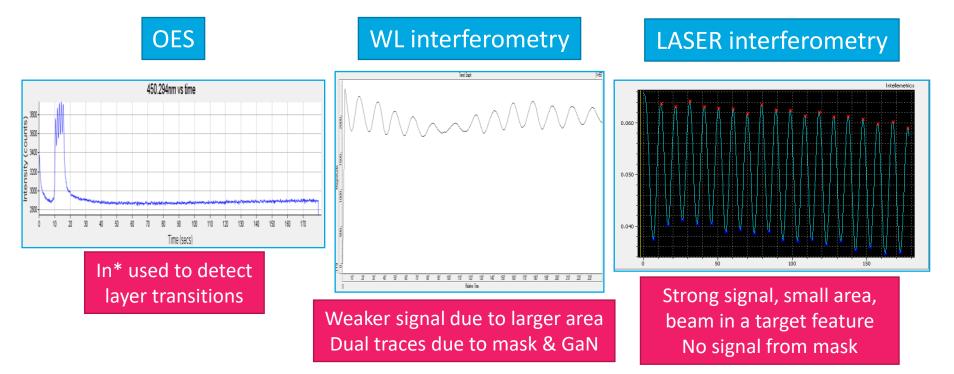



- Interferometry between front & back side faces of the Si
 - Semi-transparent in NIR (900-1700nm)
- Method correlates interference output with an optical model to compute thickness

ReVia[®] (Patented)


Recipe Process Time (sec

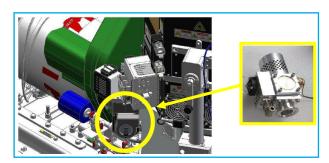
Accounting for incoming thickness variations = increased yield


Unique & robust end-pointing for any TSV layout or RST variance

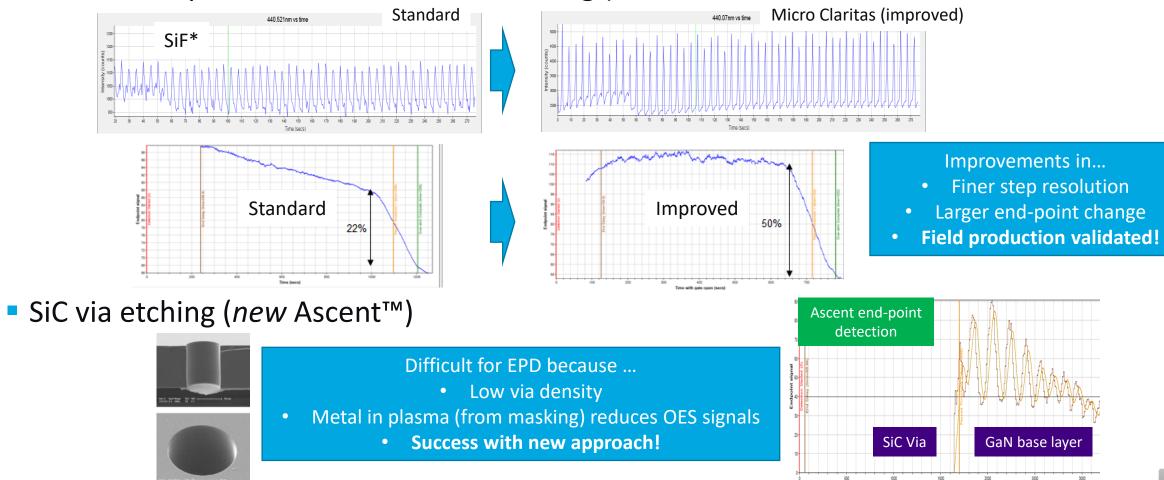
Example of EPD Method Selection

- 350nm AlGaInN/2.3µm GaN
- Blind etch with no stop layer

Multiple end-point systems can be applied to the same chamber (if required)


End-point Detection Methods

Method	Monitors	Based on	Used for
Parametric*	System	APC angle He flow	Large open areas Through wafer etches
Optical emission spectroscopy (OES)	Plasma	Glow from plasma	General purpose when stop layer present (Poly, Oxide, Al, GaAs)
Claritas*		Re-ignited glow from plasma	Bosch Si etching
WL Reflectance*		Reflection	Tapered TSVs
WL Interferometry		Broad area interferometry	Non-Bosch Si trenches SiC trenches
LASER interferometry	Wafer	Small spot interferometry	VCSEL stacks SiC trenches
NIR*		Interferometry	Wafer thinning
ReVia*, Ascent*		Wafer vision	Via Reveal, SiC via etch


*Unique to SPTS

Claritas[™] improvements for Deep Si etching (*new* Micro Claritas[™])

20 KLA Non-Confidential | Unrestricted

Patent applied for

Conclusions

EPD is an essential tool for controlling Plasma Etching processes

- Better devices & higher yields
- Datalogs, the plasma/gas or the wafer itself can be monitored in-situ
- Troublesome etches include very low OA%, high AR or blind features
- Solutions exist for a broad range of etches/device types
- SPTS has the broadest range of available methods
 - All fully integrated to the system software, multiple EPDs on the same chamber
 - Including unique methods such as ReVia[®] & Claritas[™]
 - Plus a new method for SiC vias! Ascent[™]
 - Contact us for more specifics for your applications and needs

Web Resources @spts.com – Questions?

Tech Insights

https://www.spts.com/resources/tech-insights

- Application Briefs
 - <u>https://www.spts.com/resources/lite</u> <u>rature-library</u>

Published Technical/Conference Papers

https://www.spts.com/resources/presentations

Thank you!

More Questions?

- Contact you local SPTS Sales team
- Email <u>enquiries@spts.com</u>
- Keep up-to-date with SPTS! at <u>https://www.spts.com/</u>

https://www.linkedin.com/company/spts-technologies-ltd

https://twitter.com/SPTS_Tech

KLA