

Fabrication of Nanoscale Silicon Membranes on SOI Wafers Using Photolithography and Selective Etching Techniques:

Participant Names: Moriah Faint, Marcos Rodriguez Mentor: Frank Tsang

Date: 8/6/18

- ASU building compact hard x-ray free-electron laser
- Smaller and less expensive than current models
- Hard x-rays with ultra-short pulses do not damage tissues

- Able to image living molecules in-situ
- Future use in medical research and green energy development

NCI Southwest Project Objectives

- Create Free-Standing Silicon Membranes
 - Acts as base for electron diffraction grating in laser
- Develop Photolithography and Etch Processes
 - Use silicon on insulator (SOI) wafers with 220 nanometer silicon membrane layer

Fig 2. Plan View of Grating in Membrane

Fig. 3. Diffraction Grating Cross-section (a) and Modeled Forward-scattered Pattern of the Electron Beam (b) Nanni et.al, 2018

RIZONA STATE

NVERSITY

Southwest Photolithography on Polished Si, 1

- Deep etch (675 micron) requires thick PR layer
- Approx 1 micron PR lost per 67 microns Si etch depth
- Need 12 13 microns of PR to complete full etch
- Spin curves from manufacturer not accurate to our conditions and equipment
- Created our own Spin Curve by testing PR thickness with various spin speeds in-house

Fig. 6. Photoresist (PR) Spin Curve

NCI Southwest Photolithography on Polished Si, 2

- Able to clear thick resist layers
- Developed pores are clean
- Target pore diameter = 100 microns

Fig 7. Developed Pattern

Fig 8. Developed Central Pore

NCI Southwest Etching on Polished Si

- Test etch on polished Si practice wafer
- Obtained etch rate and Si etch:PR loss ratio

Fig 9. a) Overhead Image and b) 3D Profile of Etch Test on Polished Si. Taken with Zygo Profilometer

NCI Southwest Photolithography on Unpolished SOI

- Process consistent on polished Si
- Began work on SOI wafer
- Rough, unpolished backside presented challenges
- Pattern development not clean
- Result not good for etching

Developed Pore on Polished Si (for comparison)

Fig 10. Developed Pore on Unpolished Backside of SOI

NCI Southwest Etching on Unpolished SOI

- Didn't have time to redo photo process
- Used a different mask for etch test
- New pores several mm square, rather than 100 micron round
- Etch produced a membrane, but separated and slid off pore
- Stress too much for 220 nm silicon membrane to handle

Fig 11. Fully Processed Pore with Separated Membrane Sitting on SOI Front side

- Developed Good Process for Polished Silicon Pieces
- Unpolished Backside of SOI Wafer Presented Challenges
- Able to Etch SOI after Removal of Oxide Layer (> 1 µm) on Back
- Larger (square) Pore Size Used on SOI Caused Membrane Separation due to Stress
- SOI Process Needs Refining
- For Optimal Results, Start with SOI Wafers Polished on Both Sides (Double Polished)

References:

E. A. Nanni, W. S. Graves, and D. E. Moncton. Phys. Rev. Accel. Beams 21, 014401 – Published 19 January 2018

NCI Southwest PR Thickness with F40 Microscope

Fig 15. PR Thickness Calculated from F40 Reflectance Measurement

- **Take Reflectance**
- Software calculates actual layer thickness
- Repeat multiple times over wafer area and

ARIZONA STATE NIVERSITY

Fig 14. F40 Microscope

NCI Southwest STS Plasma etching, Bosch Process

Fig 12. STS DRIE Plasma Etcher

Fig 13. Example of Bosch etching process. Picture courtesy of © H. Föll (Semiconductor Technology - Script)

NCI Southwest Machines Used During Process

Equipment used, shown in order of Process flow

Fig 16. Cee Spinner, F40 Microscope, EVG620 Mask Aligner, Development Bay, STS Plasma Etcher

- Si is common and inexpensive
- Easy to etch and fabricate
- Atomic structure gives desired electron beam diffraction

