

Harvard John A. Paulson School of Engineering and Applied Sciences

WHERE SCIENCE AND ENGINEERING CONVERGE

LiNbO₃ Nanophotonic Platform for Nonlinear Optics

Rebecca Cheng, Marko Lončar

John A. Paulson School of Engineering and Applied Sciences, Harvard University Center for Nanoscale Systems (CNS), Harvard University

NNCI Etch Symposium, 2022

Thin-film lithium niobate: an excellent nonlinear optical platform

 $\boldsymbol{P}(t) = \epsilon_0 \left(\boldsymbol{\chi} \boldsymbol{E}(t) + \boldsymbol{\chi}^{(2)} \boldsymbol{E}^2(t) + \boldsymbol{\chi}^{(3)} \boldsymbol{E}^3(t) + \cdots \right)$

Lithium niobate

- Large electro-optic effect, $\chi^{(3)}$ nonlinearity (+ more)
- Large transparency window
- Periodic poling

Thin-film LN

- Commercially available thin-film wafers
- Developed ridge waveguide fabrication process

Dispersion engineering – powerful tool for nonlinear optics!

Low-loss waveguides

M. Zhang et al. (2017)

1 µm

C. Wang et al (2018)

Kerr frequency combs One-soliton state Pump dB/div Exp RBW OOkH Sim, no Raman Sim, Raman 25 5.46 5.58 Frequency (GHz) 10 ŭ 1650 1550 1600 160 180 200 220 240 140 260 Wavelength (nm) Z. Gong et al (2020) Frequency (GHz) a

...and more!

Optical frequency combs

Frequency comb generation

- Generation of octave spanning soliton combs at 100's GHz-THz repetition rates
- Low conversion efficiency (~1%)

Q. Li et al. (2017) M.H.P. Pfeiffer et al (2017) M. Karpov et al (2018)

Frequency comb generation

Pulse generation and driving

Higher conversion efficiency (lower average power)

M. Anderson et al. (2020)

Frequency comb generation

Pulse generation and driving Amplitude + Phase Modulation CW Light Pulsed Light Compressed Pulses Pulse Train / Comb

• Higher conversion efficiency (lower average power)

Can we do it all on chip?

Yes, with thin-film lithium niobate!

- Pulse generation
- Dispersion management
- Frequency comb generation

Overview

- 1. Ultrashort pulse source
- 2. On-chip dispersion management
- 3. Nonlinear broadening on thin-film LN

Overview

- 1. Ultrashort pulse source
- 2. On-chip dispersion management
- 3. Nonlinear broadening on thin-film LN

Time lens concept

Aperature Lens Diffraction

Pulse generation through electro-optic time lens!

- Amplitude modulator \rightarrow numerical aperture
- Phase modulator \rightarrow temporal lens
- Dispersion → propagation length = focal length

LN chip and measurement

Measurement results

Overview

- 1. Ultrashort pulse source
- 2. On-chip dispersion management
- 3. Nonlinear broadening on thin-film LN

On-chip dispersion management

• Move pulse compression on-chip

Dispersive Waveguide

59 m SMF \rightarrow 0.49 m dispersive waveguide

L = 2.5 mm
$$\rightarrow$$
 Footprint reduced even further!!!

Spectrally-dependent reflector acts as an integrated dispersive delay line!

•
$$\Lambda_1 = 406.5 \text{ nm}$$

• $\Lambda_2 = 414.5 \text{ nm}$

Device characterization

Proof of principle measurement

Integrated device!

Footprint reduced by ~34,000 when compared to SMF!

Overview

- 1. Ultrashort pulse source
- 2. On-chip dispersion management
- 3. Nonlinear broadening on thin-film LN

Nonlinear broadening

- Pulse generation
- Dispersion management
- Frequency comb generation

EO modulators

chirped Bragg grating

high-Q microresonator

Nonlinear resonator

Experimental setup

Ultra-short pulse source / electro-optic time lens system

Broadening

Experimental setup

- 0.45 pJ pulse energy
- ~400 nm bandwidth at 30.1 GHz repetition rate

Over 1500 comb lines

~6% conversion efficiency

Conclusions and outlook

- Thin-film LN is an excellent material platform for nonlinear optics
- Demonstrated on-chip pulse generation, pulse compression, and pulse broadening on thin-film LN

Acknowledgements

Harvard

Mengjie Yu (now USC) David Barton Amirhassan Shams-Ansari C.J. Xin Marko Lončar

HyperLight Christian Reimer Lingyan He Kevin Luke Mian Zhang

And the rest of the Lončar group!

HARVARD

School of Engineering and Applied Sciences

