

Fabrication and characterization of freestanding infrared pixels for high speed IR detector applications

Frank Yang Mentor: Yinan Wang Prof. Daniel Wasserman University of Texas at Austin

EXAS

Security and surveillance

Optics & Photonics News (April 2011).

Dual Comb Spectroscopy

I. Coddington, *et. al.*, "Dual-comb spectroscopy." *Optica* 3, no. 4, 2016.

Gas analyzers

esrl.noaa.gov

Communications 100 Transmittance (percent) R & & & & 80 ŵ 2 3 4 -5 10 11 12 13 14 15 6 7 8 9 10 Wavelength (microns) H₂O co.Ò. H₂O ç ço H₂O - cia cò CO2 н_юо Absorbing Molecule

wikipedia.org/wiki/Infrared_window

TEXAS

Drawbacks:

- Junction capacitance limits speed (PIN junction).
- Invasive ohmic contacts (PCD)
- Collection of DC current.

We seek to explore novel detector architectures.

Detector architecture

UT Austin

- Fields capacitively couple from microstrip to SRR.
- Circuit resonance results in frequency dependent transmission.
- Pixel photoconductivity changes microstrip transmission.

 $\sigma(t) = q[n(t)\mu_n + p(t)\mu_p]$

8/12/2019

ſEXAS

Starting sample

InSb (600nm)
AISb (200nm)
GaAs (500µm)

Starting sample (MBE by Bank group) contains lattice mismatch between InSb/AISb and GaAs to introduce defects and decrease carrier lifetime.

6

Pixel Fabrication Process

1. Spinning photoresist

Photoresist
InSb
AlSb
GaAs

4. ICP Dry etch

2. Mask alignment and photolithography

5. Acetone and RIE O₂ clean

GaAs

3. Developer bath and H₂O rinse _____

liise	
	Photoresist
	InSb
	AISb
	GaAs

HF undercut etch

GaAs

Pixel after wet etch

InSb IR pixel and SRR circuit fabrication

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

7. PDMS pixel peel off

UT Austin

InSb pixel array on PDMS stamp after peel off

- 1mm x 1mm SRRs fabricated on Al₂O₃ via UV photolithography, metallization, and liftoff.
- SRRs contain 10nm Ti adhesion layer, 280nm Au layer.
- 50µm wide SRR and microstrip lines.
- 30µm coupling gap between SRR and microstrip.
- Pixel transfer by Yimeng Wang (Tutuc Group).

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

InSb pixel lifetime characterization using µ-TRMRR

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEXAS

SRR loaded with InSb pixel

 $\overline{}$

µ-TRMRR (Micron scale-Time Resolved Microwave Resonator Response)

• Carrier lifetime measurement technique with direct electrical readout of carrier dynamics.

S. Dev, Y. Wang, et al., *Nature Comm.*, 10, 1625, 2019

Room temperature measurements reveal **sub-nanosecond recombination lifetimes.**

Time (ns)

Carrier lifetime power and temperature dependence

- µ-TRMRR fit with exponential in two regions • yield two different lifetimes.
- Lifetime decreases with fall in temperature
- τ_1 decreases with fall in incident power, τ_2 is relatively consistent

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

TEXAS

Detector can be modeled with transmission line simulations:

Conclusion

EXAS

- InSb pixels exhibit sub-nanosecond carrier lifetimes.
- SRR loaded with InSb pixel allows optical modulation of RF signal for detection.
- This detector architecture potentially surpasses speed limits of conventional photodetectors.

Future Work

- Investigate carrier dynamics to explain two decay regimes and integrate with transmission line model.
- Measure detector bandwidth.
- Explore applications requiring high speed IR detection, such as time-resolved photoluminescence and dual comb spectroscopy.

EXAS

Questions

Normalized RF Signal

8/12/2019

0.1

0.01 ND0

ND0.5

ND1

ND2

5

Δ

W