

# Thermoelectric Properties of CuBi<sub>x</sub>Sb<sub>1-x</sub>Te<sub>2</sub> Bulk Alloys

#### **Akshay Paruchuri**







NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROU















NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUF

#### **ASSIST Industry Members**



# CuBiSbTe2 Material System

- > Why is this material system interesting?
  - Unusually low thermal conductivities in preliminary measurements
  - Potentially significant ZTs prior to processing steps such as annealing and/or microwaving
  - Even amorphous samples (melt-quenched without any spark plasma sintering) show ultra-low thermal conductivity
  - Potentially useful in waste heat recovery devices, among other applications of thermoelectrics

NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROU

# ΖT



- A standard measure of the effectiveness of a thermoelectric material's properties in the context of energy harvesting
- Not necessarily the best way to evaluate thermoelectric materials. It's important to consider individual parts of zT as well, such as thermal conductivity and its overall influence on output power.

5

NOERG



NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROL

# XRD



log Intensity (cps)



NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUP



NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUF

# LSR

- A means to measure the Seebeck coefficient and electrical conductivity of a sample, typically a cylinder or bar of roughly 10 mm or greater
- > Our temperature range: 40C to 400C

> Nuances:

- Probes and how they make contact with the sample (two probes make contact with a single sample that is held by two gradient heaters)
- Steps between gradient heating rates sometimes can be problematic depending on the thermal conductivity of a sample
- Measurement must be taken with helium in the LSR due to good

VANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUI



NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUI

# LFA

- A means to measure thermal diffusivity and eventually various components of thermal conductivity (predominantly electronic thermal conductivity and lattice thermal conductivity)
- Six samples can be measured at a time via laser flash measurements – very convenient and fast!
- Entire process takes place under vacuum, meaning that heating is somewhat difficult at times. Reasonable when going from 40C to 400C.

NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROU

NOERG

#### **Thermal Conductivities**



VANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROU



Temperature (C)

NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROL

13

NOERG

## **Other Measurements**

- Density measurements via a scale extension that utilizes Archimedes principle – provides precise density measurements
- DSC, or Differential Scanning Calorimetry, will be utilized for specific heat data in order to better calculate thermal conductivity



NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUI

#### Energy Dispersive X-ray Spectroscopy in Scanning Electron Microscope









10um



EDS scans confirmed the homogeneity of the synthesized CuBi<sub>0.50</sub>Sb<sub>0.50</sub>Te<sub>2</sub>

> NANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUI

## Conclusions

- Of the compositions investigated, CuBi<sub>0.5</sub>Sb<sub>0.5</sub>Te<sub>2</sub> proved to be the most interesting due to its ultra-low thermal conductivity (~0.9 Wm<sup>-1</sup>K<sup>-1</sup>) and resulting zT of approximately 0.65 at 45°C
- Reason(s) for ultra-low thermal conductivity are yet unknown and require(s) exploration
- Samples will be made and analyzed for compositions around CuBi<sub>0.5</sub>Sb<sub>0.5</sub>Te<sub>2</sub>, such as CuBi<sub>0.4</sub>Sb<sub>0.6</sub>Te<sub>2</sub> and CuBi<sub>0.6</sub>Sb<sub>0.4</sub>Te<sub>2</sub> for alloy optimization
- Further processing techniques will be introduced, such as annealing and microwaving, to further optimize the zT

VANOSCIENCE AND QUANTUM ENGINEERING RESEARCH GROUI