Improving the Cycling Life of a Li-ion Battery

BY JOHNATHAN O'NEIL PI: DR. REICHMANIS MENTOR: KRYSTEN MINNICI

> Southeastern Undergraduate Internship in Nanotechnology, NSF EEC-1757579

Georgia Institute for Electronics

Focus on anode to Li-ion battery

- Using a high capacity material for long battery life
- Volume Expansion leads to low electron transport
- Use a semi-conductive polymer as binder for the anode

Active Material: Magnetite

Pros

- Readily Available
- High theoretical capacity (926 mAhg⁻¹)

Cons

- Low conductivity
- Insertion process causes volume expansion which causes poor cycle life

Magnetite (Fe₃O₄)

Polyethylene Glycol (PEG) Coating

- Reduce aggregate size
- Improve dispersion
 - Shorten ion diffusion path
 - Homogenous current distribution

Semi-conductive Binder

- Provides alternative charge pathways
 - Increases electron transport
- Testing PPBT and derivatives (PNBT, PHBT, PKBT)

poly[3-(potassium-4-butanoate) thiophene] (PPBT)

Overview: Anode Components

Magnetite (Fe₃O₄)

 Readily available
High theoretical capacity (926 mAhg⁻¹)

Polyethylene glycol (PEG)

 Coating for Magnetite
Increase dispersion

poly[3-(potassium-4-butanoate) thiophene] (PPBT)

Semi-conductive binder

Improve electron transport

Procedure

Coat	Coat Fe_3O_4 with PEG to reduce aggregation
Formulate	Formulate the ion-exchange derivatives of PPBT
Mix	Mix PEG-Fe $_{3}O_{4}$, polymer binder, and Carbon Super P to create the slurry
Fabricate	Fabricate the electrode by blade coating the slurry

Thermogravimetric Analysis

K4.11: 10.3 wt% PEG K4.16: 9.18 wt% PEG AVG: 9.74 wt% PEG

Particle Size

Average Particle Size:

P-K-BT: 14.5 nm \pm 5.4, 279.8 nm \pm 205.3 nm P-NH₄-BT: 226.4 nm \pm 83.2 nm

Survey Scan of Semi-conductive Polymers

- K is present in PKBT and PPBT
- N is present in P-NH₄-BT
- K is not present in PHBT

Morphology

P-NH₄-BT

PPBT

25 Jul 2018 Scan Rot = Off Stage at T = 0.0 * Pixel Avg N = 50 Aperture Size = 30.00 µm Out Dev.

P-H-BT

P-K-BT

Carbon Peaks

- 1st peak: C-O
- 2nd peak: Carboxylate
- 3rd and 4th peak: pi-pi stacking satellite peaks

Iron Peaks

1st and 3rd peak: Fe⁺² 2nd peak: Fe⁺³ shown due to interactions between Fe₃O₄ and polymer binder

Conclusions

- Successful ion exchange
- Dispersion of ion-exchange electrodes are similar to that of the PPBT electrode
- Smaller polymer particle sizes may increase charge transport due to surface chemistry
- PPBT and PKBT induce more interactions as seen from pi-pi satellite peaks
- Iron peak at ~716 eV shows interactions between Magnetite and each polymer binder

Future Work

Battery testing (cycle life and rate capability)

Conductivity tests

Questions?

