

Nanoporous Metals for Onboard Hydrogen Generation and Li-Ion Battery Applications

Alexander Ng^{1, 2, 4}, John Corsi^{1,2,3}, Eric Detsi^{1,2,3}

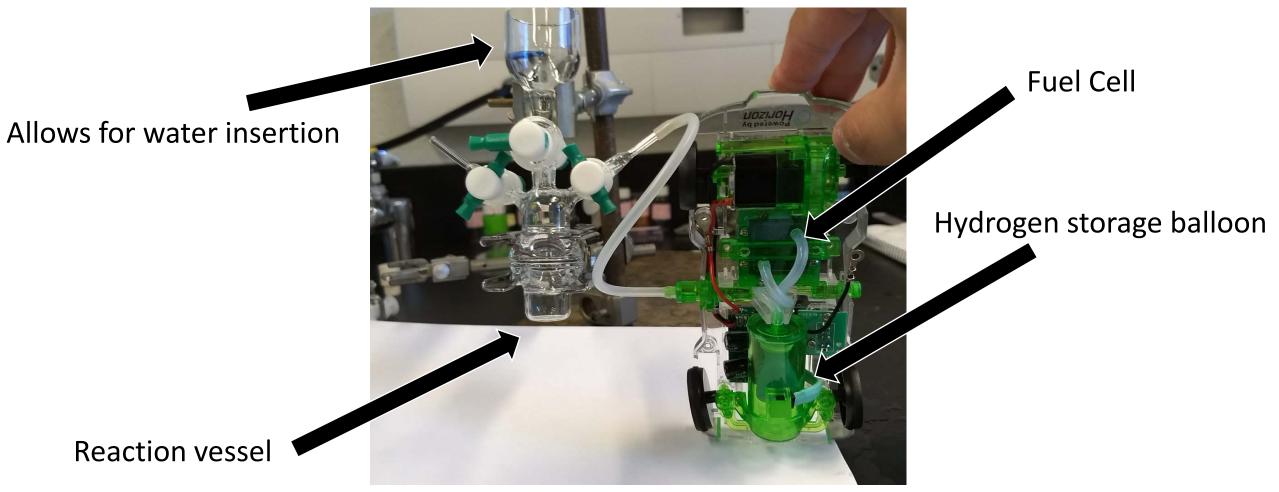
¹Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA ²Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA 19104, USA ³Vagelos Institute for Energy Science and Technology (VIEST), Philadelphia, PA 19104, USA ⁴St. John's University, Queens, NY, 11439, USA

Introduction

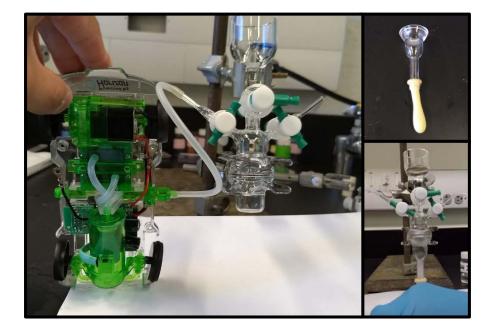
My time in the 3DAFSN lab has been spent working on two projects with the aim of contributing to the effort on energy research.

- Onboard generation of hydrogen from **bulk nanoporous aluminum** that can be used to feed **hydrogen fuel cells** and power cars.
- Study of the **volume expansions** in Li-ion battery anodes using **nanoporous silver** (NP-Ag) as a model anode material. The primary research goal is to use transmission electron microscopy (TEM) to image the pore expansion in NP-Ag anodes in real-time during charging and discharging.

Onboard generation of hydrogen



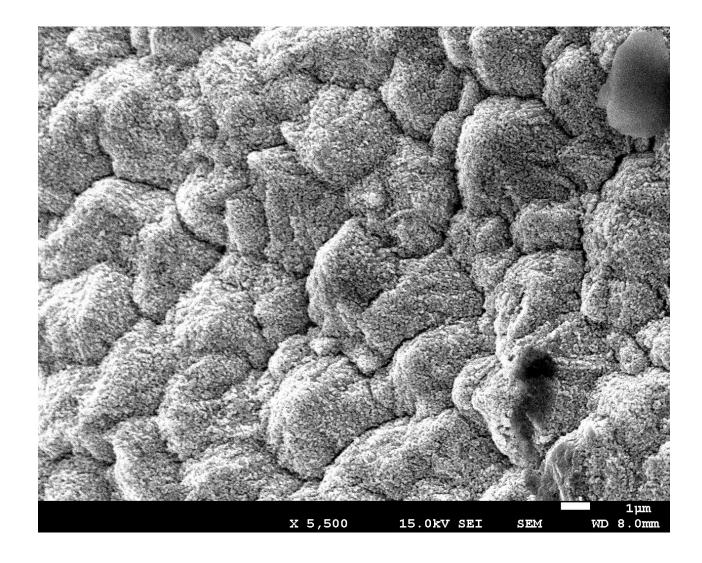
Step 1: Hydrogen from Aluminum and Water Reaction: $2AI(s) + 6H_2O(I) \rightarrow 2AI(OH)_3(s) + 3H_2(g)$


Step 2: Creating a Airtight Reaction Vessel

Initial Attempt for Reaction Vessel

Want "Onboard Hydrogen Generation" instead

 After various attempts, we ended up using a vial wrapped in Teflon tape, Parafilm, and electrical tape.

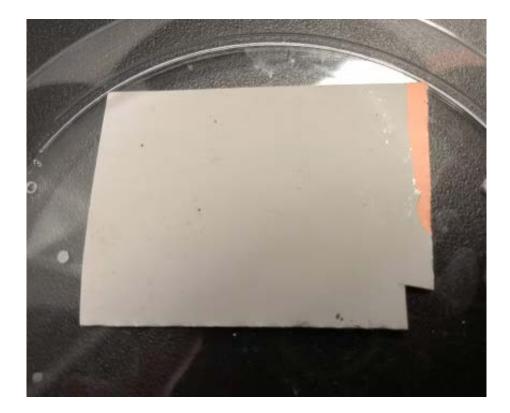

Video of Hydrogen Powered Toy Car

Further Steps

Hydrogen Generation Project

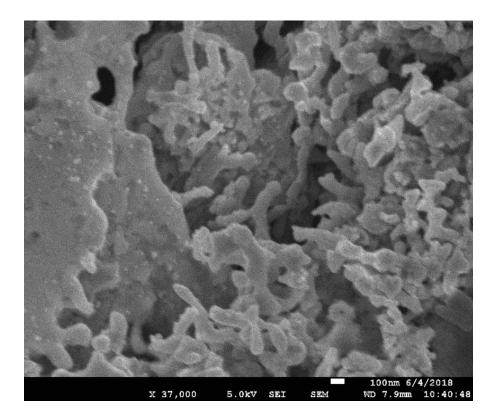
Make a system that retains pressure and can run without the addition of the argon balloon

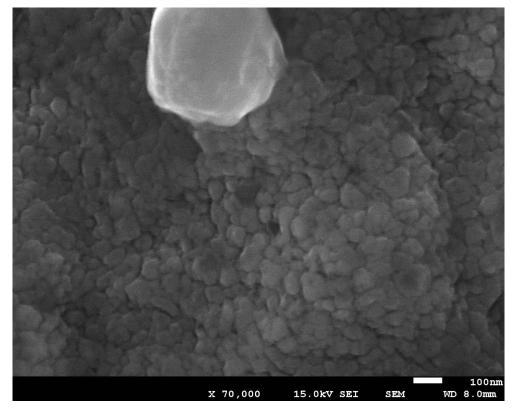
Development of Nanoporous Silver


Preliminary signs for Nanoporosity

Al and Ag are deposited in layers and annealed to make an Al-Ag alloy.

This is dealloyed in 0.1 M HCl to remove aluminum from the alloy, and leave only silver, with **structural nanopores**, where the aluminum was.


To tell if sample is nanoporous, we look for these signs:

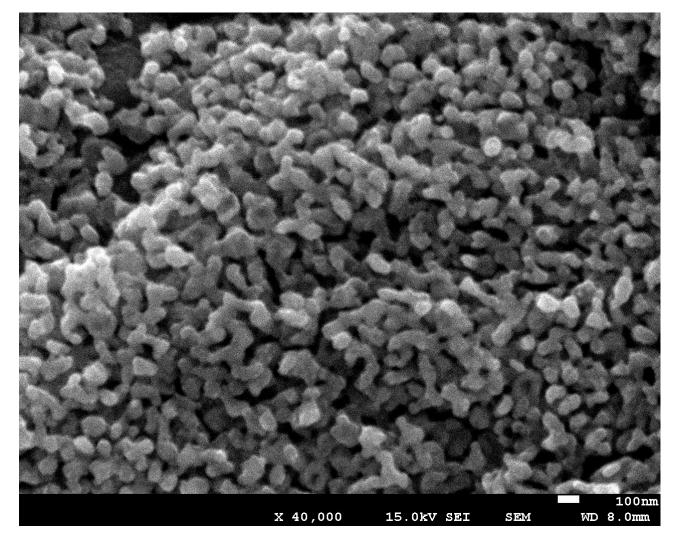

- EDXS ratio of 85:15 Al:Ag
- **Bubbles** during dealloying (when submerged in HCl)
- Turns **black** when dealloying

		Before Dealloying		After Dealloying	
Copper Foil Thickness	Magnification	AI	Ag	AI	Ag
A: 100 nm	no zoom	94.83	5.17	69.3	30.75
	zoom	n/a	n/a	64.2	35.82
B: 190 nm	55x	98.41	1.59	17.5	82.52
	1000x	n/a	n/a	46.4	53.64
	1000x	n/a	n/a	47.5	52.48
C: 250 nm	55x	44.62	55.38	32.4	67.56
	1000x	48.1	51.9	33.1	66.88
	1000x	45.98	54.02	30.9	69.06
D: 250 nm	55x	65.86	34.14	-4.46	104.46
	1000x	75.71	24.29	8.81	91.19
	1000x	64.98	35.02	74.5	25.51
Glass	55x	n/a	n/a	n/a	n/a
	1000x	43.04	56.96	n/a	n/a
	1000x	42.68	57.32	n/a	n/a

SEM Testing on the Annealed Samples

What we WANT, but didn't SEE

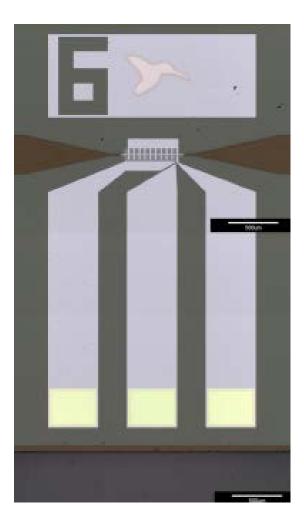
What we do SEE


Annealing was the Problem

High heat of annealing (550°C) makes copper complexes

- Prevents the dealloying form occurring NO NANOPOROUS STRUCTURES
- So we tried dealloying WITHOUT annealing

Promising Results


Type of Sample	AI	Ag	
Dealloy GLASS	4.65	95.35	
Dealloy Cu FOIL	18.20	81.80	
No Dealloy Foil	76.28	23.72	

Further Steps

NP-Ag Project

- These new NP-Ag samples will be tested in battery cells to collect the potentiometric data.
- Focused Ion Beam (FIB) will be used to transfer battery components to a microchip.
- The microchip battery will be imaged under TEM to observe the pore expansion

Special thanks to...

John Corsi Timothy Lee Sam Welborn Dr. Eric Detsi NSF PIRE #1545884