AIN and AIScN RF Microsystems

Prof. Matteo Rinaldi

Director of Northeastern SMART Center Northeastern University Boston, MA 02115, USA <u>rinaldi@northeastern.edu</u> <u>https://youtu.be/UCS4x10lQ4Y</u>

2022 NNCI Etch Symposium-University of Pennsylvania - April 22, 2022

MEMS in Consumer Products

2

Piezo MEMS in Consumer Products

Multi-Functional and Near-Zero Power Piezo Microsystems

Radio Frequency Filters - Needs

• 4G/LTE frequency bands are often co-located next to other frequency bands with little to no guard band separating adjacent bands and have challenging TX/RX frequency separation

 Miniaturized RF filters with low-loss, large skirt steepness and out of band rejection are required to satisfy the 4G/LTE stringent multi-band operation requirements:

Microacoustic RF Filters

- Micro acoustic resonators guarantee high Q in a reduced form factor not achievable with LC networks
- Nth-order filters are formed by N micro-acoustic resonators electrically (or mechanically) coupled

• Aluminum Nitride FBAR (Film Bulk Acoustic Resonator) has gone mainstream thanks to superior performance with steeper rejection curves compared to surface acoustic wave (SAW) filters

AIN Microacoustic RF Filters

Technology	Mode Shape	$\mathbf{f_0}$	k_t^2	Q	Frequency Tuning
FBAR	t	$\propto \frac{1}{T}$	$\propto e_{33}^2 \approx 5 \sim 7\%$	1000 ~ 5000	Non lithographic
CMR		$\propto \frac{1}{W}$	$\propto e_{31}^2 \approx 1 \sim 2\%$	1000 ~ 5000	Lithographic (full range)
CLMR*		$f_r \propto \frac{1}{T}, \frac{1}{W}$	$\propto \frac{2}{\pi} \left(e_{31}^2 + e_{33}^2 \right) \approx \approx 5 \sim 7\%$	1000 ~ 5000	Lithographic $(40\%, k_t^2 \ge 5\%)$

* C. Cassella, et al., "Aluminum Nitride Cross-Sectional Lamé Mode Resonators," J. Microelectromechanical Syst., pp. 1–11, 2016.

$$\begin{bmatrix} \mu_{x} \\ \mu_{z} \end{bmatrix} = \begin{bmatrix} A(x)B(z) \\ C(x)D(z) \end{bmatrix} = \begin{bmatrix} \cos(\beta_{x}x)\sin(\beta_{z}z) \\ -\sin(\beta_{x}x)\cos(\beta_{z}z) \end{bmatrix}$$

2-D Displacement vector

Lamé mode **degenerate** solutions:

$$\frac{W}{T_{AlN}} \neq \sqrt{\frac{(C_{11}C_{55})}{(C_{33} - C_{55})}}$$

 $C_{x,y}$ =Components of the AlN stiffness matrix

Cross-Sectional Lamé Mode Resonators

>40% lithographic tuning with $k_t^2 \ge 5\%$

AIN Cross-Sectional Lamé Mode Resonators – Record FoM

AIN Cross-Sectional Lamé Mode Filters

High fractional bandwidth (BW>3.9%) and unprecedented levels of loss (IL<1dB) and spurious suppression enabled by the combined use of thicker platinum electrodes and **apodization techniques**

Center

	Filter	Resonator	Pitch [µm]	Comsol Simulation		Fitting		Measurement			
				Static Capacitance [fF]	k_t^2	k_t^2	FBW	IL [dB]	FBW	Termination	
		Series	4.9	358	7.6%	6.5%	6 5 0/	2.00/	0.0	4.00/	
$J_s \qquad J_s$	A	Parallel	5.1	146	7.6%		5.9%	0.9	4.0%		
$T f_{\rho}$	р	Series	4.6	346	7.5%	6 5 0/	2 70/	0.7	2.00/	700 0	
<u> </u>	D	Parallel	4.8	141	7.4%	0.3%	5.7%	0.7	5.9%	/00 22	
stern	C	Series	4.3	334	7.1%	6.5%	2.90/	07	4.0%		
enter	C	Parallel	4.5	136	7.4%		5.8%	0.7			

G. Chen, et al., IEEE MEMS 2018, Jan 21-25, 2018

New Paradigms and Opportunities for the 6G Spectrum

H. Holma, et al., "Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G." Nokia Bell Labs

Breakthroughs in resonator material and design highly needed

Sc-Doped AlN Material Platform for the 6G Spectrum

TEM image of Al₆₉Sc₃₁N –Pt interface showing absence of a "dead layer"

Property	Metric	Best Measurements	Range of Measured Data		
	XRD full-width-half-maximum with >90% single phase	1.43°	1.43° - 2.6°		
Material quality	Surface Roughness	0.9 nm	0.9 - 2.07 nm		
	Film Thickness Range	101 – 700 nm	101- 700 nm		
	Film stress range	25 MPa	-309 – 414 MPa		
Composition	Doping value achieved	20% - 37%	20% - 37%		
	Through-thickness composition variation	0.5%	0.5% - 2.2%		
	Lateral film composition deviation per 100 mm	0.78%	0.78% - 3.55%		
	Dielectric constant	14	14 – 22.3		
	Piezoelectric constant (e _{31,f})	-2.2 C/m ²	-1.42.2 C/m ²		
Electrical	Remnant polarization	171 µC/cm ²	90 -171 µC/cm ²		
Properties	Coercive field	3.38 MV/cm	3.38 - 5.43 MV/cm		
	Polarization switching speed	0.8 µs	0.8 – 6 µs		
	Tan δ values	0.016 @ 5kHz	0.016 - 0.049		

Dry etch of AlScN

•

Parameter	Value		
ICP Power	700 W		
RF Bias Power	200-400W		
Cl ₂ Gas flow	10 sccm		
BCl ₂ Gas flow	6 sccm		
Ar Gas flow	28 sccm		
Chamber Pressure	10 mT		

- Low Temperature SiO₂ is used as a hard mask and can be removed via wet etch in BOE or dry etch in Ar/CF₄/CHF₃/H₂ gas mixture.
- Etch rates: $AI_{72}Sc_{28}N = 140 \text{ nm/min}$, SiO₂ =120 nm/min
- Sidewall angle \approx 74 deg.

28% Sc-doped AlN Contour Mode Resonators for Low 6G Spectrum

Films from 300 mm AlSc₃₀N alloy sputtering target

Parameter	Value		
Power	5 kW		
RF Bias Power	10 W		
N ₂ Gas flow	30 sccm		
Ar ₂ Gas flow	0 sccm		
Temperature	300 °C		
Chuck height	20 mm		

30% AlScN CLMRs - Highest figure of merit SHF Acoustic Resonator

Single-chip Multi-Band SHF AlSc₃₀N Filters

Acknowledgement

Research Faculty:

Ph.D. Students:

- Prof. Zhenyun Qian

Research Scientists:

- Dr. Cristian Cassella
- Dr. Luca Colombo

Postdocs:

- Dr. Pietro Simeoni
- Dr. William Zhu
- Dr. Tao Wu

- Yu Hui
 - Zhenyun Qian
 - Guofeng Chen
 - Gwendolyn Hummel
 - Ryan Sungho Kang
 - Vageeswar Rajaram
 - Yao Yu
 - Bernard Herrera Sokup
 - Michele Pirro
 - Sila Deniz Calisgan
 - Flavius Pop
 - Giuseppe Michetti
 - Mika Assylbekova
 - Antea Risso
 - Hussein Hussein
 - Gabriel Giribaldi
 - Farah Ben Ayed

BILL& MELINDA GATES foundation

Zepsor

INTERDIGITAL.

DHS Center of Excellence

