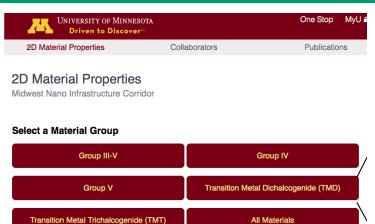
NNCI Computation

Azad Naeemi Georgia Institute of Technology azad@gatech.edu


Objectives

- To facilitate access to the modeling and simulation capabilities and expertise within NNCI sites.
- To identify the strategic areas for growth in modeling and simulation
- To promote and facilitate the development of the new capabilities.

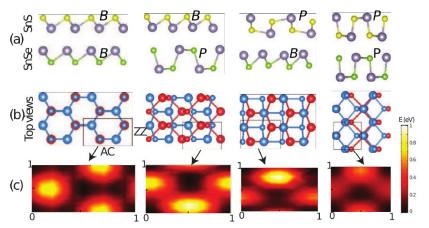
An inventory of available modeling and simulation resources and expertise is being complied. The directory is hosted by nanoHub.org.

8 supercomputers or major computing clusters are available in various sites.

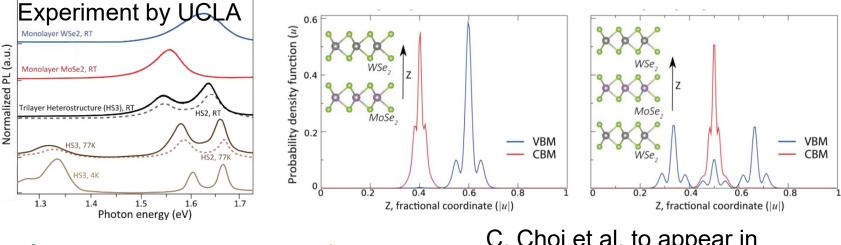
2D Materials Database on MNIC Website

period 1	group 1 1.00794 220 H								_	The	e Per	iodic	Tab	le
2	Hydrogen No 6.941 cose 3 Li Uthium	2 9.012182 8855 1.57 4 Beylium berylium	1st ion	atomic mass able mass number zation energy in k2/mol emical symbol	- 762.5	e ⁴⁵ .83 <u>2</u>	+6 +6 +5 +3 +2	omic number ectronegativi	ty alkali	i metals ine metals metals ition metals	netalloi nonmeti halogen noble ga	als s	13	12.01 108.5 Carbs
3	22.96976 66.8 0.88 Na Sodium Nei 2r	24.3050 7277 1.31 12 Magnesum Nei 34	3	name configuration 4	- [Ar] 30 5	6	-2 m	sidation state	ectin	10	radioactive masses in p	12	20.90153 1773 1.01 Aluminium Ne(30'30'	28.08 7845 Silco 78124
4	39.0583 19 K Potasskum (Ac)4e ¹	40.078 5883 1.00 20 Caloum (Attain	44.95591 21 Scandium (A) 51 40	47.867 585.8 1.54 Titanium (4) 50' 40'	50.9415 1239 135 Vanadum (Ar)30*44 ¹	51.9962 24 Chromium (Actor 4e	54.53804 25 7/23 1.55 25 Marganese (41.56* 46*	55.845 N2.5 1.83 26 Fe Ion Io() 50* 60*	58.93319 27 Cobat Pr(35'44)	58.6934 28 Nickel Mickel	Copper (AC 54" 44"	55.38 stat 4 2nc period for test	60.723 104 141 31 Gallum Pr/Det* 447 441	72.64 382.0 Germ (He) 30*
5	85.4678 colo colo 37 Rubidium pojsv	87.62 5435 Shortium Shortium	88.90585 39 Yitskam 9 40'50'	91,224 40 40.1 1.33 40 Zrconium NO APT Sof	82 90538 41 Nicolium (0) 47 50	95.95 2.16 42 Molybolenum	(98) 1.50 43	101.07 7:0.2 2.30 Ruthenium 10) 44' 54'	102.9055 7197 2.20 45 Rhodum	106.42 46 Pd Palladium 90145*	107.8682 47	112.441 67.3 1.00 Cadmium (0).44".54"	114.818 49	118.7 7065 Th (M) 47
6	132.9054 55 	137.327 56 Sct 9 5.60 56 Barium (k) or	174.9668 71 523.5 1.27 71 Lutetum (sq) 41 52 54	178.49 98.5 1.30 72 Hafniam (No) 47 52 60*	180.9478 73 7810 1.50 Tantalum (Ke) 41" Sorter	183.84 7700 2.36 Tungsten (X4) 411 501 501	186.207 761.0 1.50 Ree Rhenkum (xij 4" sr ee	190.23 600 2.30 76 Osmium (k) 4" 57 64"	192.217 77	195.084 78 Pt 228 Platinum (x) 4" of to	196.9685 79 801 2.54 Gold (54) 41" 54" 65"	80.59 Nort 2.00 Meacoby (N) 4" 54" 64"	204.3833 81 5934 152 81 Thallum (ks) 41" 53" 64" 65"	207.2 754 Pl Lead (Ne) 4P
7	(223) 0.70 87 Francium (34(7))	(226) 5.00 88 Radum Pictor	(2662) 103 (25.0 Lawnencium (567.52-52)	(261) 104 100.0 Rf Rutherfordium Physics Set Set	(262) 105 Dibnum	(200) 106 Seatorgium	(284) 107 Bh Botnium	(277) 108 Hassium	(268) 109 Mt Metherium	⁽²⁷¹⁾ 110 DS Darmstadium	(272) 111 Rg Roentgenium	(285) 112 Copernicium	(284) 113 Uut Ununtrium	(280) Flaro
	s d	tron configurati	p	138.900 Sali 1 Lanthar	Ce				hium Samari	n Eu	G		D	alum
	 1 k3/mol 	elements 113,115, Icial name designat = 96,485 eV. Its are implied to h	ed by the SUPAC.	(227) Actinue (Per Ger Tr	89 232.03 ar a Thorius	10 90 231.03	58 91 208.00 3 91 007.00 3 91 007.00 1.50 91 00 1.50 000	100 92 (237) 1.56 92 (01.5 NR	93 (244) 54.7 PLUD	94 (243)		n ³⁶ (247) Berkek	97 (25.1) 50.0 Cf	98

© 2018 Regents of the University of Minnesota. All rights reserved. The University of Minnesota i and employer. <u>Privacy Statement</u>



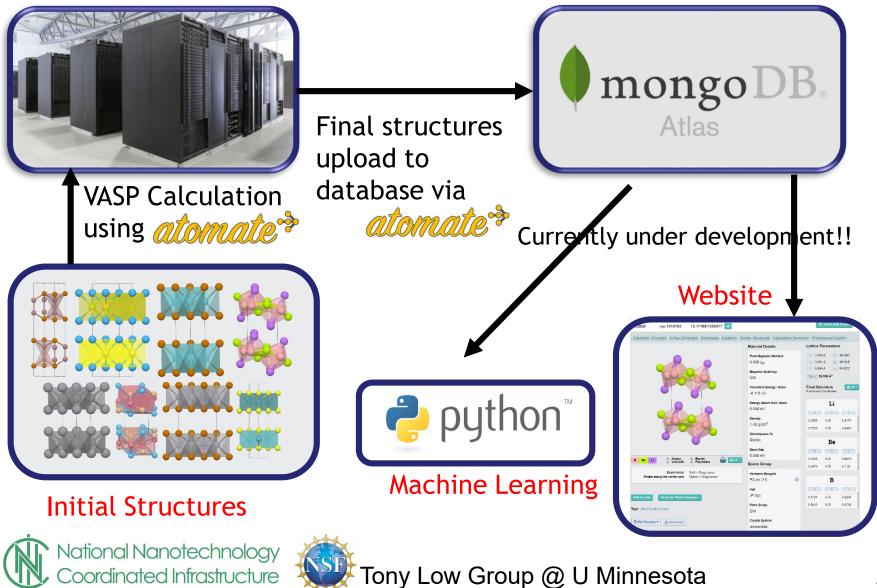
	WSe2							
Property	Property Description/Value							
	Bulk	Monolayer						
Lattice constant (a)	3.28 Å [1]	3.32 Å [2]						
Molar mass	341.76 g/mol [3, 4]	341.76 g/mol [3, 4]						
Band gap type	Indirect [5]	Direct [5]						
Band gap energy	1.2 eV (experimental) [6]	1.65 eV (experimental) [5] 1.25 eV (calculation) [2]						
Coordination geometry	Trigonal prismatic (W ^{IV}), Pyramidal (Se ⁻²) [3, 4, 7]	Trigonal prismatic (W ^{IV}), Pyramidal (Se ⁻²) [3, 4,7]						
Crystal structure	hP6, space group P6 ₃ /mmc, No 194 [3,7]	hP6, space group P6 ₃ /mmc, No 194 [3, 7]						
Appearance	Grey to black solid [3, 7]							
Group	Transition Metal Dichalcogenide [7]	Transition Metal Dichalcogenide [7]						
Spin-orbit splitting		0.47 eV [2]						
Poisson's ratio		0.19 [2]						
Cohesive energy per unit cell		15.45 eV [2]						
Charge transfer of W atom	0.96 e [2]	0.96 e [2]						
In-plane stiffness		115.52 N/m [2]						
Density	9.32 g/cm ³ [3]	9.32 g/cm ³ [3]						
Melting point	1500 °C [8]							
Exciton binding energy		0.79 eV [9]						
W-Se bond length		2.55 Å [2]						
Dielectric constant (ε)		Real part (ɛ1)=-22, Imaginary part (ɛ2)=-10 (at 1.7 eV incident photon energy) [10]						
Effective masses		$m_e = 0.53 m_o, m_h = 0.52 m_o$ [11]						
Effective Bohr radius								
Thermal expansion coefficient		11.08×10 ⁻⁶ /°C [12]						
Bulk Modulus (B)								
Refractive Index		5.68 [13]						
	Carrier mobility in WSe ₂							
Thicknesses	BN/SiO ₂ /Si substrate	SiO ₂ /Si Substrate						
8 nm		~350 cm ² /V.Sec (hole) [14]						
Monolayer	~31 cm ² /V.Sec [15]							
Bulk								


New Capabilities

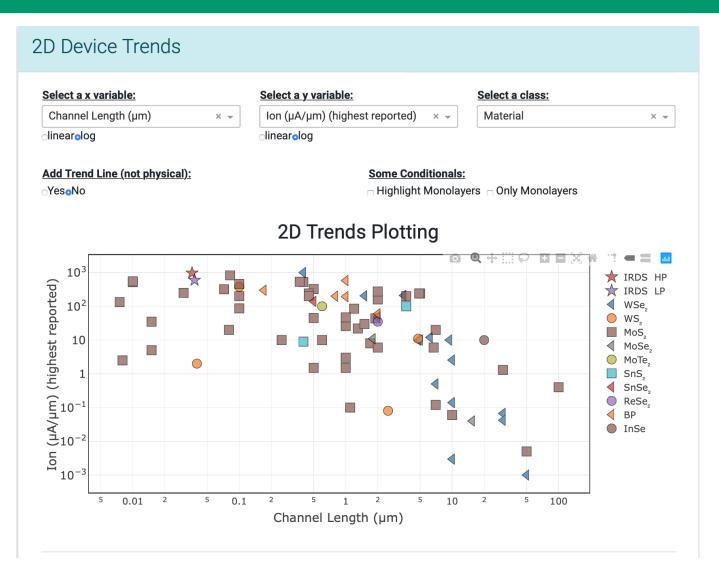
Mechanically stable tin-monochalcogenides heterostructure

O. Ongun et al, Phys. Rev. Mat., 051003 (2018)

2D materials heterostructures engineering for optoelectronics



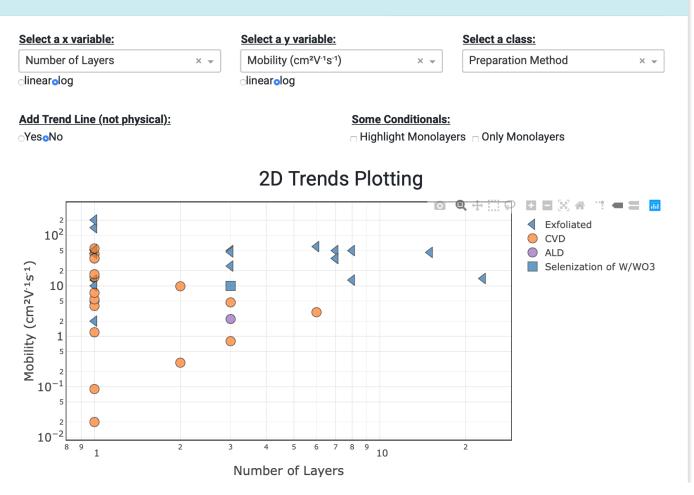
National Nanotechnology Coordinated Infrastructure



C. Choi et al, to appear in Nature 2D Materials (2018)

What is Next

2D Materials @Stanford


National Nanotechnology Coordinated Infrastructure

6

Eric Pop, Stanford, http://2d.stanford.edu/2D_Trends

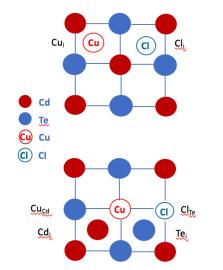
2D Materials @Stanford

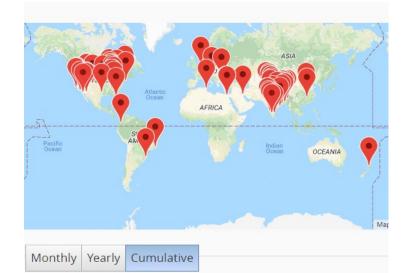
2D Device Trends

Eric Pop, Stanford, http://2d.stanford.edu/2D_Trends

Pseudopotential Virtual Vault @ Cornel

- Database of over 1100 pseudopotential or PAW files.
- Available for Abinit, Quantum Espresso, Qbox, and Siesta.
- Search by periodic table element
- Search for pseudopotentials with specific properties
- http://nninc.cnf.cornell.edu




CdTe Solar Cells @ ASU

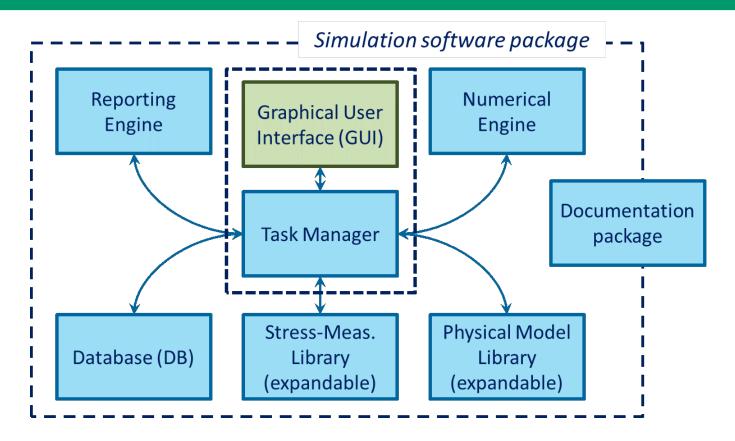
Physical Model: Point Defects

- Intrinsic Defects in CdTe:
 - Cd_i(0/2+), V_{cd}(0/2-), Te_i, Cd_{Te} ...
- Extrinsic Defects in CdTe:
 - <u>Cu Defects</u>
 Cu_i(0/+), <u>Cu_{cd}(0/-), Cd_i-Cu_{cd}(0/+)</u>...
 - <u>Cl Defects</u> <u>Cl_i(0/±)</u>, <u>Cl_{Te}(0/+)</u>, <u>Cl_{Te}-V_{Cd}(0/-)</u>...
 - <u>Cu-Cl Complexes</u>
 <u>Cl_{Te}-Cu_{Cd}(0), Cl_i-Cu_{Cd}...
 </u>

Dragica Vasileska, ASU (NCI-SW)

Available on nanoHUB and used globally.

Limitations of PREDICTS Unified Solver


- Difficulties in extending the solver to incorporate new defect chemistry for CI, As dopants.
 - > Not user-friendly incorporation of DFT parameters.
 - Difficult to identify the root causes of issues.
- Numerical Algorithm instabilities with As defect chemistry for 0D reactions.
 - Mainly because of chain reactions.
- CI diffusion and segregation at grain boundaries (GB) was not clear with the modeling assumptions.

From Da Guo, PhD Dissertation, Arizona State University 2017.

Next Generation: The PVRD-FASP Solver

Modules for the PVRD-FASP Solver. (FASP:= First Solar, ASU, SJSU, Purdue)

Abdul R Shaik, et al., "PVRD-FASP: A Unified Solver for Modeling Carrier and Defect Transport in Photovoltaic Devices", IEEE J. Photovoltaics, 2019 online

National Nanotechnology Coordinated Infrastructure

PVRD-FASP Graphical User Interface

The Tool and the documentation is publicly available online at <u>http://pvrdfasp.com/</u>

The Python based community version is available online at <u>https://gitlab.com/abdul529</u> <u>/pycdts</u> Can be installed with python as \$ pip install pycdts

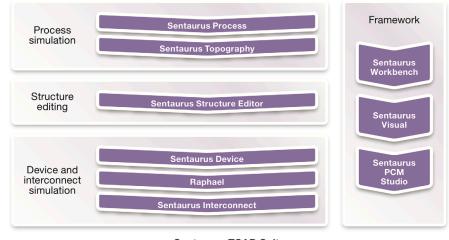
CNF Nanoscale Simulation Cluster

- Users can make use of modeling software tailored for nanoscale systems, devices, & processes.
- Model with existing codes, develop and test new codes, or bring your own license for commercial software!
- Scientific Linux 7, SLURM, and OpenHPC

National Nanotechnology

- New head node with 9TB of shared disk space
- 2 new compute nodes ea. w. 256GB RAM, 2 Intel Gold 6136
- 18 legacy nodes ea. with 24GB/32GB of R Xeons Xeons

u/cluster


CNF Local Computing Capabilities

- Goal: support of users performing research at the CNF
- Windows workstations for CAD in computing lab and individual tool labs
- CNF Thin linux-based hotdesking... take your login session with you!
- Linux conversion computers and AWS cloud for simulations and conversion of files from GDS to tool native file formats
- Available software: <u>Simulation</u>: Coventor; PROLITH; Layout LAB; TRACER <u>CAD</u>: BEAMER; Autodesk; L-Edit; LinkCAD; Java GDS <u>Mindel Potata Anolicies</u>: <u>Excenteriore</u> NanoScope Analysis; <u>Winel V</u>

Commercial Tools

Synopsys offers quarterly 3-day "Basic Training Workshops on TCAD Sentaurus Tools" at their Mountain View, CA, headquarters.

Tuition is waived for students, staff, and faculty affiliated with all NNCI sites even if their school does not have a license.

Sentaurus TCAD Suite

The typical license fee of some of the major simulation tools have been collected and shared with site directors.

Had some discussions with Coventor about a discounted license fee.

- New and updated databases and simulation tools have been released.
- Several major updates are forthcoming.
- Cornel Computing cluster came back on line last year.
- NNCI can potentially better negotiate with vendors.

