Caroline Howell PI: Dr. Josh Kacher Mentor: Jordan Key

> Strain Localization **During Slow Strain** Rate Testing of Sensitized Al-Mg Alloys

Georgia Institute for Electronics Tech and Nanotechnology

National Nanotechnology Coordinated Infrastructure

Background

- Aluminum (Al) is a desired commodity for its high strength to weight ratio and corrosion resistance, but pure Al is too soft for structural applications.
- Aluminum-Magnesium (Al-Mg) alloys keep the lightweight features while increasing strength, formability, and weldability. Yet, the magnesium segregation can lead to localized corrosion and stress corrosion cracking.
- Our objective is to understand the influence of different Navy-relevant environments on the ductility and mechanical properties of Al-Mg alloys.

Grain Boundaries

Salt Corrosion Effects

Al 5456 Alloy Samples

Al 5456 = Al with 3% wt Mg

Ways to detect brittle/ductile fractures

1. Stress Strain Curves from the Instron

2. Observing the Fracture Surface on SEM

Brittle vs. Ductile

1. Stzess Syl nama georves

Stress Strain Curves

Displacement at Break (Standard) [mm]	Force at Break (Standard) [kN]	Maximum Force [kN]	Displacement at Maximum Force [mm]
9.27	18.08	19.08	8.91

Salt Corroded & Sensitized

SEM Images

Magnification = 1000 ± 10

Corroded

Further Work

- Perform EBSD (Electron Back-Scattering Diffraction) on samples to understand what boundaries are cracking
- Work with computer modeling group to understand physics of hydrogen embrittlement
 - This information is going to be used to put into a computer model to help design materials to be more resistant to brittle fracture.

Acknowledgements

- SUIN REU for providing this opportunity.
- NSF for providing funds through the grant NSF EEC-1757579.
- Dr. Kacher and his graduate students, Jordan and Jahnavi.
- Leslie O'Neill and Dr. Quinn Spadola
- Dr. Chris Yang, Todd Walters, and the MILL Fellows

Georgia Institute for Electronics Tech and Nanotechnology

References

- Holroyd, N., Burnett, T., Seifi, M., and Lewandowski, J. Improved understanding of environment-induced cracking (EIC) of sensitized 5XXX series aluminum alloys. 2017.
- Young Jr, G. Hydrogen embrittlement of aluminum and aluminum-based alloys. 2012
- Baer, Danielson, Engelhard, Jones, Vetrano, and Windisch. Influence of Mg on the corrosion of Al. 1999.
- Miedema, S. A. ONE OR MORE SOLUTIONS FOR CUTTING FORCES IN CLAY AND ROCK? Figure 2. 1999.