

Novel Structures and Magnetism in Nanomagnets

<u>Hiroaki Komuro</u>

Department of Cardiovascular Physiology, Tokyo Medical and Dental University , Japan **PI: Prof. David J. Sellmyer Mentor: Dr. Balamurugan Balasubramanian, Rabindra Pahari** Department of Physics and Astronomy, University of Nebraska and Nebraska Center for Materials and Nanoscience

1. Introduction

2.Experiment

3. Conclusion

Cluster-deposition method

<u>Objective</u>

To learn how the magnetic nanoparticles are made and characterized.

- Nanoparticle
- Narrow size-distribution

National Nanotechnology Coordinated Infrastructure

- High-density magnetic recording
- Spintronic devices
- Ultra-strong permanent magnets

2018 NNCI REU Convocation RTNN – Raleigh, NC

CoSi Skyrmion

Magnetic skyrmion is a topologically stable particle-like spin configuration

(e) Skyrmion

Schematic representations of magnetic dipole arrangements in (a), (b), (c), (d), and (e)

Skyrmion \rightarrow the non-centrosymmetric B20 cubic structure, such as MnSi, and FeSi

Δ

CoSi conditioons

TEM micrograph

HRTEM image

Single crystalline particle High degree of atomic ordering

Low resolution TEM Image and particle size histogram

2018 NNCI REU Convocation RTNN – Raleigh, NC

SQUID measurement

M_{saturation} = 132 emu/cc, 55 emu/cc at 10K and 300K respectively

Ferromagnetic, Tc> 300 K

Analysis1

HRTEM image of nanoparticle

Fast Fourier Transform of HRTEM image showing cubic B20 structure.

2018 NNCI REU Convocation RTNN – Raleigh, NC

Analysis2

Cubic B20 structure

a = 4.45 Å V = 88 Å³ = 88 \times 10⁻²⁴ cm³

No of atoms = 4 Co + 4 Si

M_s = 132 emu/cc, 55 emu/cc at 10K and 300K respectively (SQUID) 1 emu = 10^{-3} J/T, 1 μ_{B} = 9.274 × 10^{-24} J/T In case of 10 K $M_s = 132 \times 88 \times 10^{-24} \text{ emu /unit cell}$ $M_{c} = 132 \times 88 \times 10^{-24} \times 10^{-3} \text{ J/T}$ $M_s = (132 \times 88 \times 10^{-24} \times 10^{-3})/$ $9.27 \times 10^{-24} \mu_{\rm B}$ $M_s = 1.25 \mu_B / unit cell$

 M_{s} = 1.25/4 = 0.31 μ_{B}/Co at 10 K M_{s} = 0.52/4 = 0.13 μ_{B}/Co at 300 K

- CoSi nanoparticles were fabricated using cluster-deposition method.
- ✓ TEM studies show that the CoSi nanoparticles exhibit an average size of 11.6 nm and form B20 cubic structure.
- ✓ Magnetic measurements show that the CoSi nanoparticles is ferromagnetic with a Curie temperature above 300K.

Acknowledgements

- Prof. D.J. Sellmyer
- All group members
- Terese Janovec

Thank You

2018 NNCI REU Convocation RTNN - Raleigh, NC

