Probing the Potential of Nanostructured Polymer Brushes

Michael E. Klaczko Chemistry, SUNY ESF

Christopher Ober and Wei-Liang Chen, Materials Science and Engineering, Cornell University

Observing Polymer Brushes

Observing Polymer Brushes

What are Polymer Brushes?

Neutral Brushes

 $h \sim N\sigma^v$

Variation of grafting density

v = 0Mushroom

Semi-dilute brush

v > 1/3Concentrated brush

Variation of solvent quality

$$v = 1/3$$

Good solvent

$$v = 1/2$$

 θ -solvent

v = 1Poor solvent

Polymer Brush Reactivity

Diffraction Grating

Diffraction Grating

Gap: 300 ~ 400 nm

Depth: 600 ~ 250 nm

line: space = 1:1

Material: Quartz

1. Deposit materials on wafer

Building the Structure

1. Deposit materials on wafer

2. Photolithography patterns

Photolithography Patterns

Wafer Development

1. Deposit materials on wafer

2. Photolithography patterns

3. RIE pattern transfer to Cr

Chrome Etch

1. Deposit materials on wafer 4. RIE pattern transfer to SiO₂.

2. Photolithography patterns

3. RIE pattern transfer to Cr

Silicon Dioxide Etch

Chrome Etch

Light Diffraction

Why are polymer brushes important?

- Antifouling
- Resistance to nonspecific binding
- Biosensors
- Cell adhesive surfaces

Acknowledgements

- National Science Foundation
- National Nanotechnology Coordinated Infrastructure National Science Foundation under Grant No. ECCS-1542081
- Cornell NanoScale Science & Technology Facility
- Professor Christopher Kemper Ober
- Wei-Liang Chen
- CNF REU Coordinators
- CNF Staff

