Modification of Signal Propagation Velocity Through Printed Circuit Boards Using High Dielectric Constant Materials

RICHARD JIANG, BROWN UNIVERSITY DOUGLAS JACKSON, UNIVERSITY OF LOUISVILLE JOHN NABER, UNIVERSITY OF LOUISVILLE

Background

Power/Ground Planes

 $V_{s} = \frac{c}{sqrt(dK_{eff})}$

Power/Ground Planes

Power/Ground Planes

Recall: Can we modify speeds of signals through PCBs?

Recall: Can we modify speeds of signals through PCBs?

$$V_{s} = \frac{c}{sqrt(dK_{eff})}$$

Recall: Can we modify speeds of signals through PCBs?

$$V_s = \frac{c}{sqrt(dK_{eff})}$$

Tested Materials

Considerations:

- Range
- Ease of Application
- Safety
- Mechanical Integrity

Tested Materials

Considerations:

- Range
- Ease of Application
- Safety
- Mechanical Integrity

Material	Reported dK
FR4	4.2
Air	1
PVDF (Polyvinylidene Fluoride)	8.4
Barium Titanate	2000
Water*	80.4
Silicon Nitride	7
Titanium Dioxide	10
Mica	7

Material	Capacitance (pf)	Reported k	Notes
	/ k		
FR4	20.7 / 4.17	4.2	Reference material
Air	7.9 / 1.59	1	Lowest dielectric
PVDF (polyvinylidene	26.6 / 5.36	8.4	3 layers of film
difluoride)			
Barium Titanate	48.5 / 9.77	2000	Dried but not sintered
Water*	63.0 / 12.69	80.4	Water & cornstarch mixture
Silicon Nitride	15.3 / 3.08	7	Research grade
Titanium Dioxide	19.0 / 3.83	10	Consumer grade
Mica	11.5 / 2.32	7	Consumer grade

Control/Reference Trace

Variable Modified trace

Material
FR4
Air
PVDF
(Polyvinylidene
Fluoride)
Barium Titanate
Water*
Silicon Nitride
Titanium Dioxide
Mica

	Measured Tp	Calculated Tp	% Error	Measured Td	Calculated Td	% Error
	(ns)	(ns)		(ns)	(ns)	
FR4	1.87	1.95	4.21	-	-	-
Air	1.21	1.30	6.77	-0.66	-0.65	0.88
PVDF	1.69	2.19	22.79	-0.18	0.24	176.05
Heated	2.30	2.90	20.78	0.43	0.95	54.79
BaTiO3						
Water*	2.90	3.29	11.91	1.03	1.34	23.13
Silicon	1.63	1.71	4.51	-0.24	-0.25	2.10
Nitride						
TiO2	1.79	1.88	4.71	-0.08	-0.07	8.52
Mica	1.49	1.51	1.34	-0.38	-0.44	13.89

	VNA Delay (ns)	Oscope Delay (ns)	% Error
FR4	-	-	-
Air	0.66	0.51	23.11
PVDF	0.18	0.12	31.94
Heated BaTiO3	0.43	0.35	18.61
Water*	1.03	0.94	8.98
Silicon Nitride	0.24	0.16	32.29
TiO2	0.08	0.06	31.25
Mica	0.38	0.32	16.45

	Measured Velocity	Calculated Velocity	% Error
	(10^8m/s)	(10^8m/s)	
FR4	1.75	1.68	4.39
Air	2.71	2.53	7.27
PVDF	1.94	1.50	29.52
Heated BaTiO3	1.43	1.13	26.23
Water*	1.13	1.00	13.52
Silicon Nitride	2.01	1.92	4.72
TiO2	1.83	1.75	4.94
Mica	2.20	2.17	1.40

• The propagation speeds of signals through printed circuit board traces were successfully varied by modifying the surrounding material.

- The propagation speeds of signals through printed circuit board traces were successfully varied by modifying the surrounding material.
- The amount by which the speeds varied followed the trend dictated by the equation V_s = c/sqrt(Dk_{eff}).

- The propagation speeds of signals through printed circuit board traces were successfully varied by modifying the surrounding material.
- The amount by which the speeds varied followed the trend dictated by the equation V_s = c/sqrt(Dk_{eff}).
- Not all measured dielectric constants matched with their reported values, indicating a need for further work in measurement techniques. Measured results agree with calculations with the exception of PVDF.

- The propagation speeds of signals through printed circuit board traces were successfully varied by modifying the surrounding material.
- The amount by which the speeds varied followed the trend dictated by the equation V_s = c/sqrt(Dk_{eff}).
- Not all measured dielectric constants matched with their reported values, indicating a need for further work in measurement techniques. Measured results agree with calculations with the exception of PVDF.
- Results show that <u>signal velocities between 4.45 and 10.67 in/ns</u> (11.31 and 27.11 cm/ns) can be obtained.

- The propagation speeds of signals through printed circuit board traces were successfully varied by modifying the surrounding material.
- The amount by which the speeds varied followed the trend dictated by the equation V_s = c/sqrt(Dk_{eff}).
- Not all measured dielectric constants matched with their reported values, indicating a need for further work in measurement techniques. Measured results agree with calculations with the exception of PVDF.
- Results show that signal velocities between 4.45 and 10.67 in/ns (11.31 and 27.11 cm/ns) can be obtained.
- These numbers are promising for increasing the efficiency of PCB area utilization and with further work, this research may find itself within standard PCB processing steps.