

Fabrication of Si, Si3N4 & InGaAsP Optical Metasurfaces with Dry Etching Lidan Zhang

ljz5170@psu.edu

Electrical Engineering Pennsylvania State University, University Park, USA Advisor: Prof. Xingjie Ni Etch Instructor: Guy Lavallee and Shane Miller

- Background
- Optical Metasurfaces based on Dry etching
 - aSi wafer scale metalens fabricated by dry etch
 - Si3N4 double-layer achromatic metalens fabricated by dry etch
 - III-V OAM and BIC lasers fabricated by dry etch
- Summary

Metasurface – Tailoring light properties in the nanoscale

Low loss, small footprint, easy fabrication and integration, low cost, etc.

Plasmonic resonance

S. Sun, et. al. Nano Lett., (2012)

Mie resonance

M. Decker, et al. Adv. Opt. Mat., (2015)

Pancharatnam–Berry phase

G. Zheng, et al. Nat. Nanotech., (2015)

Applications of metasurfaces

H. Liu, et al. Nat. Phys., (2018)

M. A. Gorlach. et al. Nat. Commun., (2018)

- Background
- Optical Metasurfaces based on Dry etching
 - aSi wafer-scale metalens fabricated by dry etch
 - Si3N4 double-layer achromatic metalens fabricated by dry etch
 - III-V OAM and BIC lasers fabricated by dry etch
- Summary

Seeing colorful world with Lenses

Cellphone

Digital Camera Conventional lenses: Bulky, Heavy Expensive, Hard to fabricate Metalens: lightweight, ultrathin

Dielectric metalenses: Low loss, strong light confinement

Design and fabrication of wafer-scale metalens

Required phase profile:

$$\varphi(r) = -\frac{2\pi}{\lambda} \left[\sqrt{(r^2 + f^2)} - f \right]$$

aSi Metalens with different mask and etching recipe

Alcatel Speeder 100 SiO₂

aSi Metalens with different etching gas

Wafer-scale Metalens

Alcatel Speeder 100 SiO₂

Oxford Cobra

- Background
- Optical Metasurfaces based on Dry etching
 - aSi wafer-scale metalens fabricated by dry etch
 - Si3N4 double-layer achromatic metalens fabricated by dry etch
 - III-V OAM and BIC lasers fabricated by dry etch
- Summary

Metalens – lightweight, manipulate aberration

metalens: metaphotonic device which can function like normal lens

Nano Lett.17.3 (2017)

Nat. Nanotechnol. 13.3 (2018)

Nano Lett. 18.12 (2018)

Design Principle

Different SiNx etching with different etching recipe

Low dispersive SiNx

high dispersive SiNx

SiNx metasurfaces with different etching recipe

Plasma-Therm Versalock

By courtesy of Yao Duan and Shengyuan Chang 15

- Background
- Optical Metasurfaces based on Dry etching
 - aSi wafer-scale metalens fabricated by dry etch
 - Si3N4 double-layer achromatic metalens fabricated by dry etch
 - III-V OAM and BIC lasers fabricated by dry etch
- Summary

Light with **orbital angular momentum (OAM)** has an **azimuthal** phase term $e^{il\varphi}$, travelling with a twisted helical wavefront.

https://en.wikipedia.org/wiki/Orbital_angular_momentum_of_light

By courtesy of Xuexue Guo

Integrated OAM microring lasers

$$l_{OAM}\varphi = \phi_{OAM} = \phi_{CCW} + \phi_{ms} = \beta_{CCW}R\varphi - \frac{2\pi}{\Lambda}R\varphi.$$

 $l_{OAM} = M - N$ M - WGM orderN - number of supercells

- Breaking CW and CCW mode degeneracy with asymmetric phase gradient
- OAM order can be tuned

Science advances 6.29 (2020): eabb4142.

By courtesy of Xuexue Guo

Convention method: CH4/H2/Ar ---- slow etch rate and chamber contamination

BCl₃ 30 sccm, 2 mT, chuck power: 200W, chuck temperature: 80 °C, no helium cooling

Scale bar: 1 µm.

ULVAC NE-550 Etching System

Characterization of OAM microring laser

The microring consists of a 500-nm InGaAsP multi-quantum-well layer, a 1- μ m InP layer and an array of metasurfaces with N = 58 supercells.

Science advances 6.29 (2020): eabb4142.

Suspended MQW Structures

- Objective:
 - Suspended InGaAsP structures for laser purpose
 - elliptical holes with axis diameter varying from 200 nm to 600 nm

InGaAsP (505 nm) InP (1000 nm) InGaAs (100 nm) InP substrate

- Bulk blue region must penetrate InGaAs layer (> 1605 nm)
- holes region must be moderate deep for promoting wet etch (>1000 nm)

Dry Etch in CI-Based Chemistry

Proper window: 190 ~ 250 °C

Hole diameter (nm)

FIG. 2. Arrhenius plots of the etch rate for process 1 (250 W/-640 V) and process 2 (1000 W/-230 V). The temperatures used are the real estimated temperatures of the sample. Insert SEM micrographs show surfaces etched with process 2.

Carlström C F, et al. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008, 26(5): 1675-1683.

Etch rate is very slow $< 190 \,^{\circ}C$

Etch lag is large > 280 °C (on Si carrier wafer)

Control RIE lag

Suspended InGaAsP photonic crystal

ULVAC NE-550 Etching System

Summary

aSi wafer-scale metalens

InGaAsP OAM laser

Si3N4 double-layer achromatic metalens

InGaAsP suspended photonic crystal

Acknowledgements

