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Applications of TiO,

* Titanium dioxide (TiO,, top) is
commonly used in dye-sensitized
solar cells (DSSC) as an electron

transport layer

1. Light excites electrons in dye TR exies
2. Electrons move through TiO, Tio, (gray) electrons, which
3. Electrons pass through external covered with move through
circuit to generate power dye (green) the TIO;
* Important to have fast, unimpeded ,3—/,—Ji ‘e
electron transfer for high solar cell .
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Doping TiO, with Rare-earth Oxides

* Doping TiO, with rare-earth oxides o
Doping increases the current

improves: generated by the DSSC, leading to
* DSSC efficiency by 20-30% (right) and higher efficiencies
e Conductivity by 40-50 times

* Related to how fast electrons can travel

* The goal of this project is to understand
why the conductivity increases

* Optimize the doping process to achieve
even higher efficiencies

* Apply the process to similar materials and 5 03 02 06 0.8

applications Bias ( V)



What Causes the Increase in

Conductivity? @

* For an electron to move freely though the TiO,, it o NLO,
needs to stay in the conduction band (CB) |

* Grain boundary and surface defects create —=
available energy states that trap electrons from ™~ |seeasun
the CB, reducing conductivity and solar cell conduction band
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* Rare-earth oxides may donate electrons to \ ¥ aeo etecrons i
——  States so they

1. Fill trap states so they can’t trap CB electrons can'ttrap CB
. . . electrons
2. Create new states with different properties —

—
* Look for changes in trap state energies or kinetics
* Cyclic voltammetry e
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Conducting Florinated

Sample Preparation T e 10

Glass

* Prepare TiO, thin film
electrodes

* Screen print TiO,
paste on FTO slides
(left)

* Mix in rare-earth
oxide nanoparticle
powders to create
doped pastes

e Sinter at 500 °C

Screen printer Prepared 2 x 0.5 cm
samples



Cyclic Voltammetry Measurements

* 3-electrode setup
1. Prepared sample as working electrode (WE)
2. Ag/AgCl reference electrode (RE)
3. Platinum wire counter electrode (CE)
* 0.1 M KOH electrolyte

* Cyclic Voltammetry (CV) Potentiostat

* Apply voltage across WE and RE
* Measure current through WE to CE

* Sweep from positive to negative voltages,
then back again to reset the device for Pt wire (CE)
successive measurements

Ag/AgCl (RE)

FTO glass

Film of material of

interest (WE)
Electrolyte

(0.1 M KOH)



e Current should increase with faster scan rates

* In d/oped samples, current curves start to overlap at a scan rate of 400
mV/s
 Happens because the scan rate is too fast for traps to completely fill
* Doesn’t occur in undoped TiO, until 800 mV/s
* Suggests slower trapping rates
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Current (A cm'z)

e Other feature of interest is the peak associated with surface defects

* The peak shifts after doping

e Suggests average trap energy increases, i.e. traps are “shallower” and less

likely to cause recombination

Undoped TiO,

Surface State
Cathodic Peak
Increasing
Scan Rate
6x10
I [ I | I
-0.4 -0.2 0.0 0.2 0.4

Bias (V vs. RHE)

Current (A cm'z)

Nd,O; doped

Undoped TiO,

Shift in peak
Er,0;Doped |«———  gssociated with
defects

-0.08V 0.15V

| | | | T
04 0.2 0.0 0.2 0.4
Bias (V vs. RHE)



* Peak location also changes depending on the scan rate

* Peak location is more sensitive to changes in scan rate after doping (left)
 Calculations show trapping rates are significantly slower (right)
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Conclusions

* CV measurements suggest:

* Trap states are at higher energies
* Rare-earth oxide electrons fill traps below and create new vacancies at higher energies

* Trapping rates are slower
e New electron vacancies are less accessible

 Slower trapping rates would contribute to the observed higher
conductivity and solar cell efficiency, since they give electrons more
time to move through the TiO, without being trapped

* Use electrochemical impedance spectroscopy to verify our cyclic
voltammetry results and correct for solution resistance
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