Bilayer Fabrication of Transient Devices using Poly(phthalaldehyde)

Alexa Espinoza

PI: Dr. Paul Kohl

Mentor: Jisu Jiang

Southeastern Undergraduate Internship in Nanotechnology, NSF EEC-1757579

Motivation

- The objective of DARPA ICARUS project is to create vanishing aircrafts.
- Small items would be supplied using these low cost, disposable aircrafts to military teams operating in difficultto-access areas.

https://www.darpa.mil/news-events/icarus-proposers-day

Time Lapse Video Showcase (200X speed, actual case took 1 hr)

Film was approximately 2" x 1.5"

Design Structure for Two Layer Structures

• Spray coating

Method

- Inexpensive and easy to apply
- Methanol development
 - Solvent for monomer, non-solvent for polymer
 - Wash out monomer from decomposition

Poly(phthalaldehyde) polymer

- Synthesize with high molecular weight (up to 400 kDa)
- Highly sensitive to acids
- Self-immolative polymer
 - Rapid unzipping after acid trigger
 - Clean monomer \rightarrow Environmental friendly

Visible Light Sensitization

- Photo Acid Generator (PAG)
 - \circ Upon UV exposure, PAG produces a strong acid.
 - Photo-active spectrum is limited to UV light.

Rhodorsil FABA

- Anthracene
 - Anthracene → absorbs UV light at λ max = 370 nm (near UV)
 - Photo-electron transfer reaction between anthracene and PAG generates free acid.

- Butylmethylpyrrolidinium Bis(trifluoromethylsulfonyl)imide (BMP)
 - Added to keep low freezing point \rightarrow keep products liquid.

PPHA vs. No PPHA on Photosensitive Layer

Sample	% PPHA	% PAG	% BMP	BMP/PAG Ratio	Time to complete depolymerization (after exposure)	Stays liquid?
1	15.4	14.0	41.4	2.96	Crystallize	No.
2	19.2	31.0	41.4	1.34	Crystallize	No.
3	0	21.7	54.5	2.51	5 min.	Yes, 10 min.
4	0	9.9	49.2	4.97	10 min.	Yes, 12 min.
5	0	8.02	53.3	6.65	5 min	Yes, 16 min.
6	0	3.9	37.6	9.64	Immediately	Yes, 30 min.

- Exposure dose: 1252.8 mJ/cm²
- Base substrate formulation: 0.5g PPHA, 60% BMP, around 300 um thick.

- Adding PPHA into photopackaged layer
 - \circ Induced crystallization
 - Prefer photopackaged top layer with no PPHA
- BMP/PAG ratio on top layer affect
 - Rate of depolymerization better mobility of H+ into PPHA.

Penetration Depth of Acid

- Exposure dose: 200 mJ/cm²
- Average thickness recorded with a profilometer

Summary

- Photosensitive transient devices can be made.
- It is possible to fabricate a non-photosensitive device with photopackage added later.
- Photopackage does not contain the polymer only photo compounds and plasticizer.
- Photo compound to plasticizer ratio is critical.

THANK YOU

