

Sunday, August 10th, 2019

Silicon-on-insulator holey photonic crystal waveguides for mid-IR gas sensing

Jonathan Zheng

NNCI REU Intern at The University of Texas at Austin Chemical Engineering Undergraduate at the University of Virginia

Mentors: Ali Rostamian, Kyoungmin Yoo

Principal Investigator: Professor Ray Chen

National Nanotechnology Coordinated Infrastructure

Portable gas sensors are widely used

- Breathalyzers
 Chemical agent sensing
- Leak detection
 Gas monitoring in space

Background

- Sensors often use absorption spectroscopy
- Mid-IR sensing over current near-IR tech

REU Project

- Silicon-on-insulator holey photonic crystal waveguides
 - Layered silicon substrate
 - Repeated patterns
 - Light propagates along hole defects

• **Goal:** Improve design & parameterize waveguide

Simulations

- Design parameters:
 - Defect hole radius
 - Waveguide width
 - Device thickness
- Metrics:
 - Bandwidth
 - Stop gap
 - Electric field profile

Results: Optimal small hole radius simulation

6

Results: Guide width simulation

Electric Field Intensity simulated profile

 Mode profile not strongly affected by guide width

Results: Varying thickness simulation

Conclusions

- We found optimal parameters:
 - $-r_{s}/r: 0.7$
 - Width: W1
 - Thickness: tradeoff; thinner is more sensitive
- Waveguide fabricated according to design
- Future work: characterize light propagation and sensitivity to ethanol

Backup

Design Parameters	Normalized E-Field Intensity
W1, 500 nm, $rs/r = 0.7$	1
W1.1 , 500 nm, rs/r = 0.7	1.0227
W1.2 , 500 nm, rs/r = 0.7	0.9855
W1, 630 nm , rs/r = 0.7	0.8523
W1, 500 nm, rs/r = 0.1	0.3950
W1, 500 nm, rs/r = 0.9	0.6753

[2] Zou, Y., Chakravarty, S., Wray, P., & Chen, R. T. (2015). Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection. *Sensors and Actuators B: Chemical, 221*, 1094-1103.

Background

- Normal spectrometers are very large
- We want spectrometers on very small chips
 - Slow light effect
- Technology moving from near-IR to mid-IR

Beer-Lambert

Beer-Lambert Law:

$$I / I_0 = \exp [-\alpha L \gamma]$$

- α = absorption coefficient
- L = interaction length

$$\gamma$$
 = absorption factor \propto f v_g⁻¹

f = filling factor

Holey photonic waveguides increase f and decrease $v_{\rm g}$

Testing Setup

Python Script

- Post-process data
- Integrates with simulation software
- Calculates bandwidth and stopgap and sweep parameters

```
# this assumes linear interpolation. we could do a cubic spline as well for even smoother "accuracy"
indexpt = lightline[count] # point on the light line closest to intersection
bandpt = banddefect data[count] # point on band closest to intersection
delta = bandpt - indexpt # difference between band and index point
# Set x1, v1 as closest point on curve to left of interpolation and x2,v2 closest on right.
# Then, find the x intersection with the light line
if count != (numpoints-1): # avoid a crash in case of indexing count+1
  if delta >= 0: # case of (+) difference
      x1 = count*kdistance/(numpoints-1)
     y1 = bandpt
      x2 = (count+1)*kdistance/(numpoints-1)
     y2 = banddefect data[count+1]
 elif delta < 0: # case of (-) difference
      x1 = (count-1)*kdistance/(numpoints-1)
     v1 = banddefect data[count-1]
     x2 = (count)*kdistance/(numpoints-1)
      v_2 = bandpt
  # the following is derived from calculating the intersection of the light line (y=x/n) w/ the data
  # to derive this, calculate the intersection of two lines at an unknown x value.
  xterm = (y1 - y2) / (x1 - x2)
  xprime = (y1 - x1*xterm) / (1/nindex - xterm)
  indexopt = xprime / nindex
  indexopt = bandpt
  print "Warning: intersection at end of gap. Bandwidth is poor approximation." # note lack of parent
return (indexopt, minband, indexpt, bandpt, xprime, delta)
```


CAD Design

- Design waveguides over range of lattice constants
- Used in E-beam lithography

•••	
•••	

Future work

- Suspended membrane waveguides
 - Minimize absorption losses with silicon oxide

Lattice Constant

- Band edge: 0.268
- Laser wavelength:3.4 nm
- 0.268 * 3.4 nm =
 0.91 nm

 \odot 0 \circ 0 0 0 00 • • 0 0 0 \circ \circ \circ \circ \circ \circ \circ \circ 0 0 0 0 0 0 0 0 0 0 0 00 0 \circ 0 0 0 0 0 0 \bullet \circ 0 0 0 0 0 0 0 0 0 0 0 0 0 \bullet 0 0 \circ \circ \circ 0 0 0 0 0 0 0 0 0 0 0 0 0 \odot

Electric Field Intensity Profile

<u>Methodology</u>

- Simulations
 - Rsoft CAD & Planewave Expansion
 - "A 2D simulation package from CAMFR is first utilized to get the optimized period and filling factor along waveguide propagation direction, as well as the effective subwavelength refractive index (nsub)." 2014
 - Mode profile
- Synthesis
 - CVD to deposit oxide on silicon
 - Electron beam lithography (EBL) to pattern components (e-beam resist)
 - Reactive ion etching to transfer e-beam pattern to silicon dioxide
 - Inductively coupled plasma (ICP) etching to transfer pattern to silicon
 - Chip cleaning with piranha / HF
- FWHM = 0.075 um

