Investigation of Atomic Layer Deposition for Distributed Bragg Reflector Mirror Stack

Jonathan Chandonait¹, Shyam Bharadwaj², Kevin Lee², SM (Moudud) Islam², Debdeep Jena^{2,3} and Huili (Grace) Xing^{2,3}

¹Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States

²School of Electrical and Computer Engineering, Cornell University, Duffield Hall, Ithaca, NY 14853, United States ³Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, NY 14853, United States

DUV LEDs

- Higher Energy, Small Wavelength
- Ability to damage DNA

Distributed Bragg Reflector

- Alternating Layers of High and Low Indexes of Refraction
- High Bandwidth to avoid Absorption
- ¼ λ Layer Thickness to promote constructive interference

https://www.researchgate.net/figure/280063325_fig8_Periodic-and-aperiodic-distributed-Bragg-reflector-DBR-stacking-n_H-and-t_H

DUV LED Structure

DUV LED Structure

DBR Problems

Crystal Lattice Match Crystal Quality

Indexes of Refraction Ultrasmooth Surface

Material Bandgap Layer Profiles

Layer Strain

ProcessCompatibility

Methods

- Molecular Beam Epitaxy (MBE) [Most Common]
- Chemical Vapor Deposition (CVD)
- Metalorganic Vapor Phase Epitaxy (MOVPE)
- Atomic Layer Deposition (ALD)

Goal

 Explore viability of ALD has a method of building DBRs for DUV LEDs

Ultrasmooth Surfaces

Growth Time

Growth Technique	MBE	ALD
Growth Rate of ALN (nm/hour)	200	20

ALD Crystal Quality

Hard to match crystal structure

Considered poor relative crystal quality

Amorphous

Pros

- ✓ Ultrasmooth surfaces
- Highly precise thickness accuracy
- Substrate compatibility
- New type of materials
- ✓ Low Temperature
- High Conformity

Cons

- Very Slow
- Relatively Poor Crystal
- Lattice Matching Problems

Conclusions

 ALD has potential to be used for DBRs in some cases but faces many obstacles to be viable.

Acknowledgements

- National Science Foundation
- National Nanotechnology Coordinated Infrastructure
- Cornell NanoScale Science & Technology Facility
 - NSF grant no. ECCS-1542081
- Dr. Grace Xing
- Shyam Bharadwaj, Moudud Islam
- CNF REU Program Coordinators
- CNF Staff

