Constructing Complex 3-D Microstructures for Enhanced Adhesion

Sanjana Subramaniam, Temple University

Mentor: Dr. Kevin Turner, University of Pennsylvania, Dept. of Mechanical Engineering and Applied Mechanics

NNCI: Mid-Atlantic Nanotechnology Hub (MANTH) for Research, Education, & Innovation

Introduction

- Bio-inspired adhesives
- Geckos, lizards, spiders, and other insects
- Unique fibril geometry enable adhesive properties
- Difficulty in manufacturing complex structures
- Develop adhesives with complex geometries using two-photon lithography

9325 \bullet

National Academy of Sciences 2006, 103,

Greiner, C.; del Campo, A.; Arzt, E. Adhesion Of Bioinspired Micropatterned Surfaces: Effects Of Pillar Radius, Aspect Ratio, And Preload. *Langmuir* **2007**, *23*, 3495-3502.

Two-Photon Lithography

- 3-D Direct Laser Writing
- Non-linear absorption process and femtosecond laser
- Alternative to traditional stereo-lithography
- Two-Photon Lithography via Nanoscribe Photonic Professional GT in QNF

Nanoscribe

High resolution structure

Geometries Explored

Size/Characteristics					Spacing (µm)
5 μm height, 5 μm	No Cap	$10 \ \mu m \ cap$	$10 \ \mu m \ cap$	10 µm cap	5
diameter		diameter	diameter	diameter	
10 µm height, 10 µm	No Cap	20 µm cap	$20~\mu m~cap$	20 µm cap	10
diameter		diameter	diameter	diameter	
15 μm height, 15 μm	No Cap	30 µm cap	30 µm cap	30 µm cap	15
diameter		diameter	diameter	diameter	
20 µm height, 20 µm	No Cap	40 µm cap	40 µm cap	40 µm cap	20
diameter		diameter	diameter	diameter	

Geometries Explored

Structure A: Pillar

Structure B: Mushroom Cap

Structure C: Small Fillet

Structure D: Large Fillet

Side-View Profiles

Key: Printed Polymer Fused Silica Substrate

Substrate PDMS

Boudou, T.; Legant, W.; Mu, A.; Borochin, M.; Thavandiran, N.; Radisic, M.; Zandstra, P.; Epstein, J.; Margulies, K.; Chen, C. A Microfabricated Platform To Measure And Manipulate The Mechanics Of Engineered Cardiac Microtissues. Tissue Engineering Part A 2012, 18, 910-919.

Optical Imaging

Master Mold: Mushroom Cap, 10 µm height, 10 µm diameter

Negative Mold: Mushroom Cap, 10 µm height, 10 µm diameter

Final PDMS Structures: Mushroom Cap, 10 µm height, 10 µm diameter

SEM Imaging

Master Mold: Mushroom Cap, 5 µm height, 5 µm diameter

Negative Mold: Mushroom Cap, 5 µm height, 5 µm diameter

Final PDMS Structures: Mushroom Cap, 10 µm height, 10 µm diameter

Micro-Indenter Set-Up

Before Adhesion Testing

During Adhesion Testing

Force load cell and silicon substrate PDMS Microstructures Microscope

Micro-Indentation Results: Force v. Displacement

Adhesion Properties

Size/Characteristics				
Description	Pillar	Mushroom	Small	Large
		Сар	Fillet	Fillet
5 μm height, 5 μm diameter	0.47 mN	0.87 mN	0.86 mN	1.03 mN
10 μm height, 10 μm diameter	0.76 mN	0.82 mN	0.82 mN	0.92 mN
15 μm height <i>,</i> 15 μm diameter	0.72 mN	0.79 mN	0.80 mN	0.88 mN
20 μm height, 20 μm diameter	0.67 mN	0.75 mN	0.77 mN	0.84 mN

Conclusion

- Designed and Fabricated complex microstructures using two-photon lithography and PDMS molding
- Characterization with Optical and Scanning Electron Microscopy
- Adhesion Testing using Micro-Indentation Set-Up
- Successful in demonstrating differences in adhesion properties as a result of small-scale changes to architecture of adhesive devices

Acknowledgements

- National Science Foundation Grant ECCS-1542153
- National Institute of Health's MARC USTAR Program Grant 5T34 GM087239
- Dr. Turner and Turner Group
- Quattrone Nanofabrication Facility and Nanoscale Characterization Facility Staff
- Dr. Kristin Field