

Broadband high-efficiency and polarization-insensitive metasurfaces

Sophia Millay¹, Wei Ting Chen², Alexander Zhu², Kerolos Yousef³, and Federico Capasso²

¹Williams College, ²Harvard University, ³Misr University of Science and Technology

Introduction to metasurfaces

- Metasurfaces: nano-structured surfaces with tailored functionalities
- Control Amplitude, phase, polarization and wavenumber of incident light

$$\vec{E} = A \cdot \exp^{i(k_z \cdot z + \varphi(\omega))} \hat{y}$$

 Previous designs of metalenses suffer from efficiency loss, leading to poor imagining quality

Past work

Circular Pillars

M. Khorasaninejad et al. (Nano Letters) 2016

Rectangular Nanofins

M. Khorasaninejad et al. (Science) 2016

Anisotropic nanostructures

WT Chen et al. (Nature Communications) 2019

- High tunability of design parameters
- >20,000 elements in the library
- Algorithm to optimize efficiency
- Improve efficiency by studying gratings

Polarization-insensitivity

• Achieve polarization-insensitivity with anisotropic nanostructures

$$\begin{bmatrix} \tilde{E}_{x} \\ \tilde{E}_{y} \end{bmatrix} = \frac{\tilde{t}_{l} + \tilde{t}_{s}}{2} \begin{bmatrix} 1 \\ \pm i \end{bmatrix} + \frac{\tilde{t}_{l} - \tilde{t}_{s}}{2} \exp^{\pm i2\alpha} \begin{bmatrix} 1 \\ \mp i \end{bmatrix}$$
Geometric phase

- When $\alpha = 0^{\circ}$ or 90°, the geometric phase becomes the same for both RCP and LCP incidences \rightarrow polarization-insensitive
- An advantage = a knob for tuning phase by π without changing dispersion

Promising simulation results

H = 600 nm

٠

٠

Grating efficiency is defined as the fraction of transmitted light that gets diffracted to a particular order

Summary

• **Metasurfaces** enable the miniaturization and integration of optical components into a single device with **multi-functionalities**

• The **high-efficiency surfaces** have extensive and promising applications in microscopy, imaging, and other technologies

- NSF National Nanotechnology Coordinated Infrastructure, NSF ECCS-1541959
- Capasso Lab
 - Wei Ting Chen
 - Alexander Zhu
 - Kerolos Yousef
- Harvard SEAS REU Program
 - Dr. Kathryn Hollar
 - Sara Wenzel

HARVARD John A. Paulson School of Engineering and Applied Sciences

