Optimization of Electron Beam Lithography for the Fabrication of Nanostructured Optical Devices

Brian Saulnier¹, James Dilts², Jacob Fleming³, Carol Baumbauer², Tristan Gray², Kemal Turksonmez⁴, Jed Pai², Andrew Hohne², Wataru Nakagawa²

¹Department of Chemistry DePauw University, 313 S Locust St, Greencastle, IN 46135 ²Electrical and Computer Engineering, ³Mechanical and Industrial Engineering Montana State University, P.O. Box 173780, Bozeman, MT 59717-3780. USA ⁴Department of Physics Hobart College, 300 Pulteney St, Geneva, NY 14456

Project Goal

 Optimize the nano-fabrication process in order to reproducibly create functional polarizing devices which select a specific polarization state and wavelength in the IR Range

- •Expected Periods: 1μm, 800nm, 600nm, 400nm, 300nm, 200nm
- •Ideal Fill Factor: 50%

Fabrication Process

Wataru Nakagawa

Optimization

- PMMA Development Time
- Primary E-Beam Dosage

Initial Dosing Trial

- •Test trial conducted to find experimental dosing range central values
- •8 test gratings with dosing steps of 5 μ C/cm², centered on original dosing values
- Original development times of 40 second
 PMMA and 100 second
 PMGI used

Optimization

Expected Period Size	New Central Dosing Values From Test Trial
1μm	300 μC/cm ²
800 nm	320 μC/cm ²
600 nm	320 μC/cm ²
400 nm	335 μC/cm ²
300 nm	340 μC/cm ²
200 nm	300 μC/cm ²

- New central dosing values chosen from test trial
- Gratings made with smaller dosing steps of $3 \mu C/cm^2$
- PMMA development time varied from 20 to 100 seconds to find optimal dose and development time combination

Qualitative Analysis

- All pictures 300 nm period, dose 331 μC/cm²
- 70 and 65 second pictures have minimal edge roughness
- 55 second picture shows rough waving grating edges
- 100 second picture shows pitting and edge roughness from over development

 Lowest fill factor variation between all periods at 50% fill occurs at 70 second PMMA development time Qualitative Analysis cont.

- All pictures 300 nm period, 70 second development time
- 349 μC/cm² and 346 μC/cm² pictures show gratings with straight edges and limited roughness
- 352 μC/cm²
 picture shows
 wavy grating
 edges
- 334 μC/cm²
 picture shows
 rough grating
 edges

Quantitative Analysis

Expected Period	E-Beam Dosing	PMMA Development Time	Measured Period	Measured Fill Factor
300 nm	346 μC/cm ²	70 sec	298.79	50.02%
300nm	$343 \mu C/cm^2$	70 sec	297.22 nm	45.88%
300nm	$349 \mu\text{C/cm}^2$	70 sec	298.48 nm	51.47%
300nm	346 μC/cm ²	65 sec	298.48 nm	44.38%
300nm	346 μC/cm ²	75 sec	297.61 nm	48.59%

Quantitative Analysis Cont.

Expected Period	E-Beam Dosing	PMMA Development Time	Measured Period	Measured Fill Factor
800nm	323 μC/cm ²	70 sec	760.77 nm	50.03%
800nm	320 μC/cm ²	70 sec	763.02 nm	49.93%
800nm	326 μC/cm ²	70 sec	766.72 nm	50.63%
800nm	323 μC/cm ²	65 sec	758.60 nm	48.25%
800nm	323 μC/cm ²	75 sec	762.20 nm	48.05%

Results

Expected Period Size	Optimal Dosing Value	Measured Period	Measured fill factor
1μm	306 μC/cm ²	992.7 nm	51.82%
800 nm	$323 \mu C/cm^2$	760.77 nm	50.03%
600 nm	$323 \mu C/cm^2$	574.48 nm	48.15%
400 nm	$341 \mu\text{C/cm}^2$	395.2 nm	48.58%
300 nm	$346 \mu C/cm^2$	298.79 nm	50.02%
200 nm	$309 \mu C/cm^2$	201.62 nm	51.89%

Conclusions

- Found optimal PMMA development time at 21° C
- Found optimal dosing values for grating periods ranging from 1 µm to 200 nm at a 70 second PMMA development time

Next Steps

- Vary PMGI
 Development time
- Modu Lab Deposition
 Optimization

Ultimate Application

wmocloudatlas.org

Acknowledgements

- National Science Foundation (NSF) Research Experience for Undergraduates (REU) Program, grant #: 1559632
- National Nanotechnology Coordinated Infrastructure (NNCI)
- NASA EPSCoR
- Montana Space Grant Consortium (MSGC)
- Imaging and Chemical Analysis Laboratory (ICAL)
- Montana Microfabrication facility (MMF).