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You can build anything at Nanofab .....CNF!

McEuen/Cohen groups, 2020 Jenna-Xing groups, 2020

SonicMEMS, 2019 Shvets group, 2021

Plourde group, 2018

CNF, 2021
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?

Which image is a real SEM?

These are all AI predictions!
SEM images shows a 2 x 2 um.

Process: (HBr+Ar) ICP-etched Si nanostructures, with UV210 resist mask.

[SEMI master class #6, 2021]
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Advances in Artificial Intelligence and Machine Learning

• ML and AI have made a lot of progress in recent years due to algorithmic advances 

and large datasets all enabled by computational resources (e.g., HPC, GPUs, TPUs 

…)

• Example areas where AI already has impact includes: E-commerce, face 

recognition and autonomous vehicles  

• AI and ML is being used in material science

• AI is being used to enhance the computation and pattern recognition efficiency on 

the data collected by micro and nanosystems (e.g, IoT, edge devices)

• But application of AI to micro and nanofabrication and device design is in its 
infancy
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Can AI/ML solve nanofabrication challenges?

Nanodevices design and manufacturing challenges:
• Excessive effort and time for new device development 

• Lack of standard/generic processes 

• Novel materials and process development challenges

• Lack of process connection with CAD tools

• Growing demand for integration

• Multiple foundry implementation challenges
No Generic MEMS Process
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Example: Si NEMS switch fabrication

1. SOI Wafer 

ResistSiO2Si

2. Resist ASML Patterning

3. Plasma Etch

4. Vapor HF Release

Cross sections of wafer

Photolithography Plasma Etch Release Etch
Layout
[W][G][P]

CD Measurement
[WCD][GCD][PCD]

Process 
Parameters

Tool 
Outputs

Process 
Parameters

Tool 
Outputs

Process 
Parameters

Tool 
Outputs

NEMS processing sequence

[Ruyack, 2018]
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NEMS radio switch

Compliant 
Contact
Springs

Fo
ld

ed
 S

p
ri

n
gs

Truss

RF Pad

Reset

Bias 
Electrodes

Contact point
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366.3 nm
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[Ruyack, 2018]



b.davaji@northeastern.edu 10

Learning outcome of nanofabrication

Device
Layout

[G][W][P]

Photolithography

Wafers Wafers

Plasma Etch

NEMS Switch

[F][E] [MFC1,…MFCn][P]
[T][ICP][RIE][t]

CD-SEM CD-SEM

AI/ML model for 
Lithography

Predict 
Results

AI/ML model for 
Plasma Etch

Predict 
Etch

Results

AI model for 
Lithography

AI model for 
Lithography

AI Engine (Device Level)OPC + EPC

Process 
Parameters

Process 
Data (DCbias, OES, … )

Process 
Parameters

Process 
Data (Leveling, focus, alignment, …)
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Machine learning = Learning from examples

• The Learning Algorithm approximates the unknown function that maps Data to Labels.
• Accurate True Labels are important! Otherwise, the Learning Algorithm is trying to find a mapping of 

"one" to "many".
• Example data must match eventual Use data! (“transfer learning”)
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Training dataset motivated by NEMS switch

[SEMI master class #6, 2021]
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Nanofabrication Tools Used for NEMS Switch

ASML – DUV Stepper

ASML PAS 5500/300C
248nm DUV

0.63-0.40 Variable NA
AERIAL Illuminator
3D-Align Back Side 

Alignment
200mm - 3" Capability

Oxford-ICP EtcherSUSS – Gamma Cluster

SussTec Gamma Photoresist Cluster
Automated Spin-coater 

Automated Develop (Spray/Stream)
Multiple Proximity Hot Plates and Chill Plate

Genmark Robotic Wafer Handling
Alta Spray Coating Module

200mm – 100mm Wafer Capability

Oxford ICP Cobra Etcher
Automatic Process Log Transfer 

Multiple viewports for spatial variability 
(RP Camera Installed)

Optical Emission Spectroscopy (OES) for 
plasma species variability

100 mm Capability
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CD-SEM Images and Preprocessing



b.davaji@northeastern.edu 15

Data Format & Dimensionality
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(1) Feature-based ML approaches

Decision Trees Support Vector Machines

Neural NetworksK-nearest Neighbor

Linear Models

Naïve Bayesian Classification

[SEMI master class #6, 2021]
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ML based regression applied to design

[W]

[G]

[SEMI master class #6, 2021]



b.davaji@northeastern.edu 18

ML for design: width & gap interpolation
[W]

[G]
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(2) Deep learning for image-to-image translation

Overall Plan:

Image-
based
NN

Predicted SEM 
(binary or gray scale)

Input Image 
(Mask Layout)

CD measurements
Virtual 

Metrology

Ref: [arXiv, 1611.07004]

One approach: Pix2Pix method for 

image-to-image translation: 
Summary of Pix2Pix method:

▪ Conditional Generative Adversarial Network (cGAN)

▪ Two main parts:

• Discriminator: measures the similarity of the input image with

an unknown image (either comes from the real target image or

the output image from the generator) and guess if this unknown

image is produced by the generator

• Generator: predict the output image from the input image

• In use mode we only use the generator.

[SEMI master class #6, 2021]
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Pix2Pix Training: Generator and Discriminator

Generator Training Discriminator Training

[MEMS 2022]

Ref: [arXiv, 1611.07004]
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Pix2Pix Method: Training & Testing versus Using

Training and Test: 

Optimize 
Pix2Pix

Network 
(Generator & 
Discriminator)

+
256*256

7.8 nm/pixel

512*512
3.9 nm/pixel

Down samplingInput Mask Image

512*512
3.9 nm/pixel

512*512
3.9 nm/pixel

256*256
7.8 nm/pixel

Binarizatio

n

Down samplingMatching CD SEM

Neural Net Weights

Run trained model

Predicted CD SEM

[MEMS 2022]
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Learning process outcomes and prediction by Pix2Pix

Post-EtchPre-Etch
Resist Profile Si Profile

Prediction
Synthesized SEM

Pix2Pix
Prediction

Pix2Pix
Prediction

Resist ProfileMask Layout
Binary UV 210- 500nm

Prediction
Synthesized SEM

SEM images shows a 2 x 2 um area.

DUV Lithography 
Process

ICP Plasma Etch

[MEMS 2022]
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What AI can do for …

• Quantification and Metrology

• Learning process parameters

• Reverse direction 

• AI-powered autonomous nanostructure design tool 

• AI-powered autonomous device design tool 
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Virtual Metrology: Resist CD-SEM

CD-SEM

RAW 

image

Median filtered Thresholding Erosion 

and 

Dilation

CD Values

2 x 2 µm 

512x512, 8 bit

Width & 
LWR

Width & LWR

Gap

Inner Contours 
(top of the resist)

Width & 
LWRWidth & LWR

Gap

Outer Contours 
(bottom of the resist)

Software 
defined 

ROI
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Virtual Metrology Verification

25

Goal: ProSEM will serve as a gold standard to compare the accuracy of measurements 

Scripting interface (Python) for automation 

ProSEM measurement results

Automatic measurement on large batch of data is possible.
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Median Filter + Adaptive Thresholding + Remove Small Connected 
Components +Erosion Dilation

Median Filter + (Sobel Edge Detection + Absolute Thresholding) + 
Remove Small Connected Components + Erosion dilation

Pretrained 
CartoonGAN

(Denoise)

Contour 
Detection

Cv2.findcontour

ROI-based
Metrology

DNN1: cartoonGAN + Thresholding

Original
SEM

Binary 
Images
(Sidewall 

Information)

Binarization
Process

Contour 
Overlay

(Sidewall 
Information)

Measurement 
Code 

Metrology 
Data

Binarization
Process
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Raw SEM images and Binary image from DNN1
are paired to form a train & test dataset for 

Pix2Pix and BasNet

A- The final trainset has 5572 image pairs including all eight structures from wafer 1 to wafer 8
B- The testset has 908 image pairs including all eight structures from wafer 9

Deep Learning Training Dataset

Only Well-connected
results are included

Data Augmentation
Reduced contrast of selected areas 
of sidewalls  

Training Dataset Part 1:
Training Dataset Part 2:

Note: Augmented SEM with reduced contrasted is paired 
with well-connected binary image in the training dataset.
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DNN2: DNN1 + Pix2Pix

Trained 
Pix2Pix

Contour 
Detection

Cv2.findcontour

ROI-based
MetrologyOriginal

SEM

Binary 
Images
(Sidewall 

Information)

Contour 
Overlay

(Sidewall 
Information)

Measurement 
Code 

Metrology 
Data

Training 
Pix2Pix

# Epoch 200
Batch size 1
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DNN3: DNN1 + BasNET

Trained 
BasNET

Contour 
Detection

Cv2.findcontour

ROI-based
MetrologyOriginal

SEM

Binary 
Images
(Sidewall 

Information)

Contour 
Overlay

(Sidewall 
Information)

Measurement 
Code 

Metrology 
Data

Training 
BasNET

# Epoch 100
Batch size 8
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Virtual Metrology: Post-Etch CD-SEM

Gapbottom

Sidewall

Micro trenching

Gaptop

Wbottom

Wtop

Active 

contour 

Outer 

Contours

Inner 

Contours

2 x 2 µm 

512x512, 8 bit

30
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Virtual metrology challenges with complexities of post-Etch CD-SEMs 

31

Post Etch 
CD-SEM Images

Virtual Metrology 
Results 

(using Pre-Etch 
algorithms)
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U-net for image segmentation 

32

https://link.springer.com/content/pdf/10.1007%2F978-3-319-
24574-4_28.pdf

Differential Interference Contrast (DIC) 

Image-HeLa Cells

U-net Architecture

Raw Image U-net Segmentation

Goal: automatic and robust segmentation of sidewalls in 
post-etch CD-SEM images

Progress: training U-net with successful results of simple 
segmentation algorithms
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CD-SEM

RAW 

image

Histogram

equalization Thresholding
1.Erosion

2.Small contours 

removal

3.Dilation

4.Small contours fill

Median filter

Post-Etch binarization process

Goal: automatic labeling to train a U-net for image segmentation 

Sidewalls are labeled in white.
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Train set
TGAP W1 104 pairs

Test set
TGAP W1-9

U-net: one structure type (TGAP/DTGAP)

Original

SEM

Binarization 

process
Binary images

(Training pairs)
U-Net Predicated Binary images

(Test results)
Measurement Metrology Data

Predicted binary images

W1

W2

W3

W4

W5

W6

W7

W8

W9
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Using RGB channels to merge process parameters with CD-SEM data

Layout

Focus

Exposure

CD-SEM

F

E

* F & E need to be scaled properly. 

Concatenated 

RGB image

Layout 
(binary)

Train 

Pix2Pix

F level to a 

uniform color 

E level to a 

uniform color 

E=17

E=22

E=27

…
……

… Example

G- channel

B- channel

R- channel

RGB image

Concatenated 

RGB Layout

Predicted Real CD-SEM

Preliminary Results:

Cell Location (A)
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)
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Training dataset: pseudo-colored layouts

• Layout + Process Parameters
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Augmentation to enhance the learning (rotation example)
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Best result parameters for pix2pix: with augmentation

Crop_size = 256
batch_size = 16
N_epoch = 400 
Epoch_decay = 100
Learning_rate = 0.0001
Augmentation: Rotated 90° 180° 270°, randomly cropped (4 times each)

Test results for other layout (Not included in the training set)

Results: with augmentation (16X)
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Process-aware AI 
Predicted Image

Experimental Image
S15_M2740-02MS.tif

Process Parameters: E=21 J/cm2, F=-0.5 µm
SEM images show 2x2 µm area (3.9 nm/pixel)

Toward assessment of learning outcomes

Pseudo-colored layout with process 
parameters

CD-SEM AI generated SEM
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Reverse direction: process diagnostics 

Training: 

Test: 

Experimental CD-SEMs Pix2Pix-Generated CD-SEMs

Pix2Pix
Prediction
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CycleGAN and Cycle Consistency

Training: 

Test: 

A
Pre-Etch

B
Post-Etch

GA(B)
Fake Pre-Etch

GB(A)
Fake Post-Etch

GA(GB(A))
Recovered Pre-Etch

GB(GA(B))
Recovered Post-Etch
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Can AI make nanodevice fabrication Ubiquitous?

• We developed ML models to learn the DUV lithography process and we 
demonstrated interpolation beyond training dataset

• We trained deep learning models to learn and predict the outcomes of DUV 
lithography and Plasma Etch Processes

• AI models can be used as a design tool (mask, process parameters,….) for 
micro and nanofabrication 

• AI potentially simplifies integration of multiple foundries working on one 
device, which potentially provides privacy gains at hardware level

• AI driven design improvement are not limited to MEMS and can be applied to 
IC industries, printed electronics, optics, and so forth
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What do you think?

Resist Profile

Pre-Etch

Etched Si Profile

Post ICP-Etch

Which one is real?

ICP Etch
(HBr+AR)

* SEM Images are 2x2 µm, 512x512, 8 bit
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Pix2Pix
Prediction

Mask Layout

Experimental 
DUV Lithography

Resist Pattern

Pix2Pix
Prediction

Experimental 
Plasma Etch

Real
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Back UP Charts: TA1-AI
This section contains the supporting data and charts to support extended 
discussions and the Q&A section.
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- Pix2Pix details
- Augmentation
- Quantification and virtual metrology
- Process parameters
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DUV lithography prediction by trained Pix2Pix

Mask CD_SEM CD_SEM Binary CD_SEM Predicted

E04_M0002-02MS

S08_M0128-02MS

E06_M0134-02MS

Pix2Pix
Prediction
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Learning outcomes Plasma Etching by Image Translation

Training

AI Model

Resist CD-SEM

Plasma Etch CD-SEM

Experimental SEM

Experimental SEM

Virtual 

Metrology
Features

Trained

AI 

Model

Resist CD-SEM Predicted CD-SEM

Predicted SEMExperimental or Synthesized SEM

[this work, unpublished preliminary results]



b.davaji@northeastern.edu 51

Pix2Pix Results for Plasma Etch 

Pix2Pix
Prediction

PredictionPre-Etch Post-Etch
Resist Profile Si Profile Synthesized SEM

DTGAP

TCL

[SEMI master class #6, 2021]
Resist Profile Si Profile Synthesized SEM

SEM images shows a 2 x 2 um area.

TCL
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Summary

• ML feature-based model for DUV lithography process

• Pix2Pix model to learn to predict the outcomes of the DUV Lithography and Plasma 
Etch

Process 
window

Selected 
feature

NEMS Switch RF Sensitivity (dB) ~ 
1

𝐺𝑎𝑝2

Future Directions:
End-to-End implementation: adjusting layout to achieve target performance 
metric
OES feature-based plasma etch improvement
Design tool to improve the electrical and mechanical performance
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Summary 

• AI can improve design (mask, process parameters,….) for micro and 
nanofabrication 

• AI driven design improvements can be used for microcalorimeter and 
Ultrasound microdevices that are also important applications

• AI potentially simplifies integration of multiple foundries working on one 
device, which potentially provides privacy gains at hardware level

• AI driven design improvement are not limited to MEMS and can be applied to 
IC industries, printed electronics, optics, and so forth
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Beyond Training Database: Augmentation
Training Data ≠ Use Data

[this work, unpublished preliminary results]
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Augmented Data and Pix2Pix Results

[this work, unpublished preliminary results]
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Virtual Metrology

Virtual 

Metrology

CD SEM Measured features

2 x 2µm 

512x512, 8 bit

upper PR edge lower PR edge

CD-SEM

RAW image PR sidewall CD values
filtered image with

PR edge detection
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Test vehicle: NEMS switch for RF wakeup

• NEMS switch can trigger at near zero 
power at the receipt of a specific very 
low RF signal

• Low power wakeup enables long-
battery lifetime devices

• NEMS switch critical to ultralow signal 
wakeup radio – both for DOD and 
civilian IoT applications

• NEMS switch uses both lithography 
and etching for testing AI framework
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Device Operation

𝐹RF =
𝑄

4

𝜖0𝐴RF
𝑔RF − 𝑧DC

2
𝑉RF

2

𝛼
4𝑘𝐵𝑇𝑄

𝑘

= 𝑘 𝛼
4𝑘𝐵𝑇𝑄

𝑘

zDC

gRF - zDC

𝑧DC = 𝑔𝑐 − 𝛼
4𝑘𝐵𝑇𝑄

𝑘

𝑘𝑧DC =
1

2

𝜖0𝐴DC
𝑔DC − 𝑧DC

2
𝑉DC

2

1. Pre-bias until the contact gap is within a few 

times the thermal noise displacement (zn)

2. Use RF to close the gap completely

VDC
VRF

C
o

n
ta

ct

VDC < VPI

gDC
gRF

gc

+zk

gRF - zDC
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Focused Ion Beam (FIB) for Gap Control

Down to 
20 nm 

possible

~93 nm



b.davaji@northeastern.edu 60

Lithography Results: Data Preparation
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Limitations of Pix2Pix

Input 
Mask

Experimental
CD SEM

CD SEM
Binary

364.6 nm

Predicted
CD SEM

302.6 nm

Pix2Pix
Prediction
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Gap Prediction Performance Quantification

MAPE : Mean Absolute Percentage Error

▪ For TGAP predicted CD SEM from masks, 58.32% out of 2915 images for which Hitachi gave a
CD value have a percentage error smaller than 10%, and MAPE is 4.44%.

▪ For TGAP experimental CD SEM from wafers, 86.65% out of 2915 images for which Hitachi
gave a CD value have a percentage error smaller than 10%, and MAPE is 1.23%. 

▪ Algorithm parameters (number of epochs and batch size) lead to +/- 5% change in 
performance.



b.davaji@northeastern.edu 63

Conditioning schemes for guiding image-2-image translation

[B. Albahar, ICCV 2019]
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Data & AI Projected impact on Semiconductor 
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KNN Performance per Feature Size

100-600

ME<100
100<ChV<600
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Width: 3014
Gap:2845

Width: 2964 (-110)
Gap:2767 (-78)

𝐸𝑟𝑟𝑜𝑟𝐾𝑁𝑁 =
𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑋𝐿𝑎𝑦𝑜𝑢𝑡
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KNN Error Gap K1
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KNN Error Gap K8
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KNN Model for width & gap Interpolation

K=1 K=8 K=32
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OES

1 23 45 7 8106 9 1 2345 7 8106 9
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GAN Evaluation Metrics

• Goal: for each input/output image pair (x,y), quantitatively evaluate 
“how good” the fake output G(x) is – difficult in general.

• Several approaches taken in previous work:
• Segmentation-Based: if x is a segmentation of y, compute segmentation of 

G(x) using FCN. Then, segmentation metrics indirectly evaluate generator 
performance (pix2pix, mAP).

• Frechet Inception Distance: using pretrained CNN, retrieve output layer 
vectors for each y (placing in set Y) and for each G(x) (in set X). Compute 
Frechet distance between the resulting sets Y, X (FID).

• Human Perceptual Study: allow individuals to select which of y, G(x) looks 
more natural in controlled study (pix2pixHD)

• Analyze L1 Loss: take average (over all images) of the L1 distance between y, 
G(x). Already able to do this, but distance is different from quality of fake.

G

D

x

y

G(x)

Real/Fake
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Segmentation-Based

• Let s be the segmentation of G(x) the fully connected network (FCN) gives. 

• Compare ground truth (x) and prediction (s) using segmentation metrics, 
taking results as a pseudo-metric for quality of the generator.

• Idea: our x is not a segmentation of y, but binary segmentation of post-
etch images (y) is relatively easy via heuristic. Segment & compare y, G(x).

G

D

x

y

G(x)

Real/Fake

Heuristic (Otsu Thresholding & 3x3 Median Filter)
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Segmentation Metrics

• Compare set of predicted foreground to ground 
truth for single image.

• Average Precision (AP):
• Assume that the final step of the segmentation 

algorithm is a simple threshold.

• For a set of n thresholds between min and max 
graylevels, evaluate the precision and recall we get 
for each (cf. precision-recall curves).

• .

• Take the mean over all images for a score with 
any of these metrics (mAP, mIoU, … )

True Foreground (A)

Predicted Foreground (B)
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Frechet Inception Distance

• Load InceptionV3 classification network, pre-trained on the 
ImageNet dataset (or possibly another CNN).

• Form sets X = {set of Inception v3 output activation vectors for each 
G(x)}, Y = {set of Inception v3 output activation vectors for each y}.

• Compute Frechet Distance between X and Y:

• Where 𝜇𝑆, 𝐶𝑆 are the sample mean and covariance of a set S.

• Lower FID indicates that sets X,Y are more similar, and thus that our 
generator produces better fakes.

G

D

x

y

G(x)

Real/Fake


