

Fabrication and Optimization of a Schottky Diode Utilizing Field Plate Termination

William Bennett Mentor: Atsushi Shimbori PI: Dr. Alex Huang

Introduction to Power Devices

- Application: High power conversion systems
- □ Ideal power devices:
 - Support high current and voltage
 - Block current under one voltage bias (OFF) and conduct in the other (ON)
 - Switch rapidly

Introduction to Power Devices

- Application: High power conversion systems
- □ Ideal power devices:
 - Support high current and voltage
 - Block current under one voltage bias (OFF) and conduct in the other (ON)
 - Switch rapidly

Schottky Power Devices

Negligible charge build up in ON state- fast switching

Fig. 2- Basic Schottky design Adapted from *Fundamentals of Power Semiconductor Devices* (14), By B.J. Baliga, 2008, New York City, 2008

- Doping concentration and drift region
- Potential gradient and Electric field
- Avalanche breakdown and impact ionization

OFF State

ON State

Fig.3 Band Structure of a Schottky Diode Adapted from *Fundamentals of Power Semiconductor Devices***4** (172), By B.J. Baliga, 2008, New York City, 2008

SPEC Semiconductor Power Electronics Center

Circular Schottky Diode

• Added field plate and passivation layer to reduce Electric field crowding at edges

Simulation Process

Si Epi Wafer Specification

Parameters	Value	Unit
Diameter	4	inch
Туре	N⁻/N+	-
Dopant P	Phosphorous / Antimony	-
Epitaxy Thickness	4.70-5.75	um
Epitaxy Resistivity	1.120-1.380	ohm-cm
Epitaxy Concentration	~3.5x10 ¹⁵	cm ⁻³
Substrate Resistivity	0.554x10 ⁻³	Ohm-cm
Substrate Concentration	~5x10 ¹⁹	cm ⁻³
Wafer Thickness	555	um

Fig. 8- 4" Epi Wafer

SPEC Semiconductor Power Electronics Center

Fabrication Process Flow

Semiconductor Power Electronics Center

Fabrication Process Images

Fig. 9 Isolation alignment marks

Fig. 12 Contact open photo

Fig. 13 Ni deposition

Fig. 14 Completed process alignment

SPEC Semiconductor Power Electronics Center

SPEC

Semiconductor Power Electronics Center

The University of Texas at Austin Cockrell School of Engineering

Si Schottky with Field Plate Structure I-V Comparison Leakage current is low 1.00E+00 1.00E-01 1.00E-02 Simple Circular Anode 1.00E-03 1.00E-04 Current [A] 1.00E-05 1.00E-06 1.00E-07 Breakdown voltage with field plate is 76.5V, twice 1.00E-08 the value of the original device 1.00E-09 Fig.15 Final Fabricated Device 1.00E-10 -70 -60 -90 -80 -50 -40 -30 -20 0 -10 10 Voltage [V]

Fig. 16 IV curve final device vs. circular anode

- Comparison of Forward I-V Characteristics
- Area doubles in each successive group
- On-Resistance (R = PI/A)
 Type D<Type C< Type B< Type A

Fig.18 Forward voltage comparison

Semiconductor Power Electronics Center

ZPEC

Conclusions

- SiO₂ passivation and field plate structure reduces electric field crowding at the anode contact edge.
- Breakdown voltage with the field plate structure is 2 times higher than the simple circular anode with a value of 76V
- SiO₂ passivation reduces surface leakage current

