

Raman Spectroscopy and Transmission Electron Microscopy of Si_xGe_{1-x}-Ge-Si Core-Double-Shell Nanowires

Paola Perez Mentor: Feng Wen PI: Emanuel Tutuc

Background

- One-dimensional semiconducting nanowires (NWs)
 - Reduced dimensions and ability to engineer their electronic properties
 - Attractive for nanoscale electronics and photonics
 - Field-effect transistors
 - Solar cells

Nanowires Growth Process

Schematic of Si_xGe_{1-x} -Ge-Si core-double-shell nanowire growth. (a) Au catalyst droplets prior to growth. (b) Vapor-liquid-solid Si_xGe_{1-x} core growth. (c) and (d) ultra-high vacuum chemical vapor deposition for the Ge shell growth and Si shell growth, respectively.

Strain

 SiGe core can be used as non-planar substrate for depositing compressively strained Ge layers and tensile strained Si layers

- Strain can change the band structure and optical phonon frequencies
 - Depends on core composition, core diameter, shell thickness, and shell morphology

Raman Spectroscopy

- Vibrational Spectroscopy
- Raman bands arise from specific molecular vibrations
- Used to probe strain and elemental content

- Tensile Strain in Si \rightarrow red shift of Si-Si mode
- Compressive strain in Ge → blue shift of Ge-Ge mode

Raman Spectroscopy of SiGe and coredouble-shell NWs

Raman spectra of Si_xGe_{1-x}NW

Raman spectra of Si_xGe_{1-x} -Ge-Si core-double-shell NW

Transmission Electron Microscopy (TEM)

- Microscopy technique in which a beam of electrons is transmitted through a specimen to form an image
- Planar and cross-sectional TEM are used to probe the crystal structure and measure the shell thickness.

TEM of core-double-shell NWs

Planar view TEM of a Si_xGe_{1-x} -Ge-Si NW. Inset: Fourier Transforms (FFT) of the NW.

- Single crystal structure, epitaxial shell growth
- The FFT is used to determine the nanowire orientation
- The VLS growth yields NWs along the <110> direction

TEM of core-double-shell NWs

Cross-sectional TEM of a Si_xGe_{1-x}-Ge-Si NW.

- Cylindrical core
- Slightly faceted shells
- Core: 10-30 nm
- Ge Shell: ~4 nm
- Si Shell: ~5 nm

Energy Dispersive X-ray Spectroscopy (EDX)

STEM images of Si_xGe_{1-x}-Ge-Si NWs.

- EDX used to determine the shell thickness and core elemental composition
- Measurements acquired using line scans across the nanowires
- Si and Ge signals are fitted with a model based on the convolution of nanowire geometry and a Gaussian electron beam

EDX Linescan Across NW

Cylindrical morphology was assumed for simplicity

Case 2: $|\mathbf{x}_0| \ge \mathbf{r}_1 \& |\mathbf{x}_0| < \mathbf{r}_2$ $w_0 = 2^*(\sqrt{(\mathbf{r}_2^2 - \mathbf{x}^2)} - \sqrt{(\mathbf{r}_2^2 - \mathbf{x}^2)})$

$$\psi_{Si} = 2 (\sqrt{r_3^2 - x^2}) - \sqrt{r_2^2 - x^2}$$

 $\psi_{Ge} = 2^* \sqrt{r_2^2 - x^2}$

Case 3: $|x_0| < r_1$ → x $\psi_{Si} = 2^{*}(X_{Si}^{*}(\sqrt{(r_{1}^{2}-x^{2})} + (\sqrt{(r_{3}^{2}-x^{2})} - \sqrt{(r_{2}^{2}-x^{2})}))$

MATLAB simulation of EDX data from both Si and Ge K-alpha signals

Future Work

- Build an accurate mathematical model taking actual morphology and beam incident angle to the nanowire
- Quantify and understand strain in NWs using growth parameters (temperature, pressure, gas flow, etc.) in Raman spectroscopy data

Acknowledgments

- National Science Foundation
 - Grants DMR-1507654 and ECCS-1542159
- Emanuel Tutuc, Ph.D.
- Feng Wen
- Marylene Palard

