Hydrogel Probes for Atomic Force Microscopy

Melissa Cadena Mentor: Tejank Shah PI: Dr. Stefan Zauscher

Background

 Human Chromosomes imaged in ambient air and liquid by the AFM and in vacuum by SEM. AFM does not require metal coating of sample.

 OLN-93 cells distributed on lamincoated line structured PMMA. The AFM image (b) provides surface topography and better 3D resolution than SEM (d).

¹ "Atomic Force Microscopy", Wikipedia; ² J. Frischeisen, *ENB*, 2012; ³ D. Yu, *Applied Physics*, 2014; ⁴ Chromosome Research, 2008; ⁵ V. Dinca, Recent Advances in Biopolymers, 2016

Disadvantages of Silicon Probes

1. Unable to image at fast scan rates and observe increased artifacts

2. Short Tip Life

3. Limited tip geometries and aspect ratios

Ideal Probe Characteristics:

- 1. Image at fast scan rates
- 2. Reduce artifacts on sample
- 3. Minimal tip wear/be cheaper
- 4. Have different tip geometry and aspect ratios
- 5. Provide tunable mechanical properties

4. Limited Mechanical Tunability

RTESPA has a low f_o and high Q (350) and FastScanA has a high f_o and high Q (180)

Q factor: Ratio of energy stored to energy lost per cycle at resonance

4

• Replicate Lee's procedure using Nicolas Wainwright's mask design and a modified mask

• Test the effect of oxygen plasma ashing on tip radius

Silicon tip with 10 nm tip radius

Hydrogel tip with 50 nm tip radius

• Controllably print PEGDA on tipless cantilevers using an inkjet printer

¹J. Lee, *JMEMS Letters*, 2017; ²Nano and More AFM Probes, SSS-FM Probes; ³Fuji Film, *Dimatix Material Printer User Manual*, 2007

Batch Fabrication Approach

Results – Chip Mold

Tipless Cantilevers

- Three different dimensioned cantilevers are present
- No deformities present

RESEARC

MRSEC

- Three different dimensioned cantilevers are present
- Deformed cantilevers present as a result of poor SU-8 adhesion
- 71% of cantilevers can be used

Next Steps

- Determine the best method for PDMS molding from PDMS master mold
- Continue batch fabrication approach to fabricate tip and tipless hydrogel probes:

- Quantify mechanical properties of hydrogel probe
- Assess the force-indentation curves on a standard sample with different types of probes .

• Replicate Lee's procedure using Nicolas Wainwright's mask design and a modified mask

• Test the effect of oxygen plasma ashing on tip radius

Silicon tip with 10 nm tip radius

Hydrogel tip with 50 nm tip radius

Controllably print PEGDA on tipless cantilevers using an inkjet printer

¹J. Lee, *JMEMS Letters*, 2017; ²Nano and More AFM Probes, SSS-FM Probes; ³Fuji Film, *Dimatix Material Printer User Manual*, 2007

Batch Fabrication Approach

• Replicate Lee's procedure using Nicolas Wainwright's mask design and a modified mask

• Test the effect of oxygen plasma ashing on tip radius

Silicon tip with 10 nm tip radius

Hydrogel tip with 50 nm tip radius

• Controllably print PEGDA on tipless cantilevers using an inkjet printer

¹J. Lee, *JMEMS Letters*, 2017; ²Nano and More AFM Probes, SSS-FM Probes; ³Fuji Film, *Dimatix Material Printer User Manual*, 2007

Can we control tip radii with batch fabrication?

Proposal: Controlling droplet volume through inkjet printing

Long Term Goal: To controllably print PEGDA spherical tips on tipless cantilevers

Cartridge Cable

Skew Plat

Holder Latch

artridge Holde

Thanks Dan Joh!

Can vary different parameters and observe changes through drop watcher

Can use a predefined design, create your own design, or import a specific pattern

Can batch fabricate a pattern because of large printing area (8.5 inches x 11 inches)

]			
				6.2	5.P		
				5.2			
	10000000						

¹Fuji Film, Dimatix Material Printer User Manual, 2007

12

• Replicate Lee's procedure using Nicolas Wainwright's mask design and a modified mask

• Test the effect of oxygen plasma ashing on tip radius

Silicon tip with 10 nm tip radius

Hydrogel tip with 50 nm tip radius

• Controllably print PEGDA on tipless cantilevers using an inkjet printer

¹J. Lee, *JMEMS Letters*, 2017; ²Nano and More AFM Probes, SSS-FM Probes; ³Fuji Film, *Dimatix Material Printer User Manual*, 2007

13

Acknowledgements

- Zauscher Lab
- Dan French Neil Gupta Salena Huang Luis Navarro Zehra Parlak

SMIF Kirk Bryson Jay Dalton

MRSEC

Miquella Chavez Katie Krieger Catherine Reyes

Chilkoti Lab Dan Joh

SMiF Shared Materials Instrumentation Facility

Contact Information:

Melissa Cadena University of Michigan <u>mcadena@umich.edu</u> LinkedIn

Extra Slides

RSEC Hydrogel Probe Fabrication and Results

Hydrogel nanoprobes image well at fast rates and minimize distortions on the sample

Hydrogel

30 nm

n Hydrogel

Can regenerate worn hydrogel tips through oxygen plasma ashing

1. J. Lee, Nature Comm, 2016

Different tip geometries and aspect ratios achievable

Can tune mechanical properties

#6

#5

10⁻⁴ 10⁻⁵

#1

#2

#3 #4

Cantilever type

Limitation: not a scalable procedure

Q-Factor

• Describes the ratio of energy stored to energy lost per cycle at resonance

- 1. Tontechnik-Rechner-Sengpielaudio
- 2. J. Adams, Nature Nanotech, 2015

Shortcomings of AFM

1. Artifacts on sample caused by worn AFM tip

Solution: Change mode (i.e. from contact to tapping mode) to minimize tip damage or change tip

Pro: Minimizes sample damage, tip wear, and artifacts because reduced tip sample interaction time $(1 \ \mu s \ vs \ 1 \ ms)$

- 1. Atomic Force Microscopy, Wikipedia, 2017
- 2. A.D.L. Humphris, Appl. Phys. Lett., 2005
- 3. J.K. Hobbs, The Analyst, 2005

2. Slow scan rate (12 frames/s) and small image area (250 x 250 nm)

Solution: VideoAFM or High Speed AFM (HSAFM)

Tuning fork provides fast scan axis (~20kHz).

Con: Not good at imaging topography that changes rapidly

