

nanofab.engineering.asu.edu

ASU NanoFab - Etch Capabilities

Scott Ageno and Stefan Myhajlenko

nanofab.engineering.asu.edu

List of Etch Tools

• ICP

- STS Advanced Silicon Etch, STS All General Etch, Plasma-Therm Apex SLR
- RIE
 - Oxford Instruments Plasmalab 80+ (2), Plasma-Therm 790
- Ashers
 - Tegal Plasmaline 411 and 412
- Vapor Etch
 - XeF2 Xactix e1

nanofab.engineering.asu.edu

ICP - STS Advanced Silicon Etch

- Installed 2002
- Deep silicon etching using the Bosch process
- SF₆, C₄F₈, Ar, O₂
- 100 mm tool
- Backside helium cooling
- 10:1 easily repeated aspect ratio
- 20:1 maximum aspect ratio
- Selectivity to photoresist is ~50:1
- Selectivity to thermal SiO₂ is ~100:1
- Super-user tool
- No exposed metal

NNCI Etch Workshop Oct 10-11, 2018 - Stanford University

nanofab.engineering.asu.edu

ICP - STS All General Etch

- Installed 2002
- STS ICP dedicated to chlorine etching
- BCl₃, Cl₂, CH₄, H₂, O₂, Ar
- 100 mm tool
- Backside helium cooling
- Used for etching of III-V compounds and dielectrics such as Al₂O₃

nanofab.engineering.asu.edu

ICP - Plasma-Therm Apex SLR

- Installed 2016
- Tool dedicated to chlorine etching.
- 150 mm tool
- Backside helium cooling
- Used primarily for etching of III-V compounds
- BCl₃, Cl₂, O₂, Ar, N₂

nanofab.engineering.asu.edu

RIE - Oxford Plasmalab M80+ (F)

- Installed 2004
- Tool dedicated to fluorine etching
- SF₆, CHF₃, CF₄, O₂ Ar
- Can handle up to 200 mm wafers
- Used for etching of silicon, SiO₂, Si₃N₄, quartz and diamond

nanofab.engineering.asu.edu

RIE - Oxford Plasmalab M80+ (Cl)

- Installed 2004
- Tool dedicated to chlorine etching.
- BCl₃, Cl₂, N₂, CF₄, O₂, Ar.
- Can handle up to 200 mm wafers.
- Used primarily for etching of III-V's, dielectrics and metals

nanofab.engineering.asu.edu

RIE - Plasma-Therm PT790

- Installed 2015
- RIE tool dedicated to fluorine etching
- Up to 200 mm wafers
- Used primarily for etching of silicon, dielectrics, metals and organics
- SF₆, CHF₃, CF₄, O₂ Ar

nanofab.engineering.asu.edu

Vapor Etch - Xactix e1

- Installed 2008
- Dry vapor phase etch system
- Etch gas is XeF₂
- Can handle up to 100 mm wafers
- Used for deep isotropic etching of silicon

nanofab.engineering.asu.edu

Future Wish List

- Short term general purpose F-based ICP to replace Oxford Plasmalab 80+
- Longer term DRIE with 150 mm capability

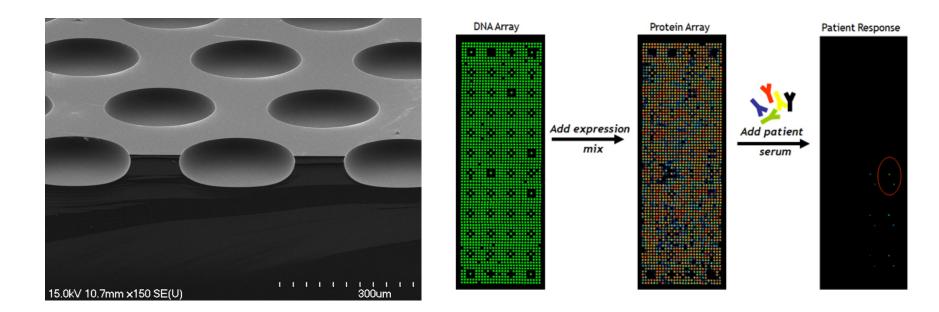
Recent Project Highlights

- ICP isotropic etch of silicon microwells
- RIE etching of diamond to fabricate PIN and BJT
- RIE etching multilayers Stellar Coronagraph
- SPC efforts

nanofab.engineering.asu.edu

ICP - Isotropic Deep Silicon Etching

- Isotropic etching performed with multiplexing turned off
- SF₆ with high process pressure.
- Microwells are etched in silicon used for Nucleic Acid Programmable Protein Arrays (NAPPA) by researchers at ASU BioDesign Institute
- NAPPA is used to identify/characterize proteins in medical diagnostics
- http://cpdlab.biodesign.asu.edu/research/HighDensityNAPPA.html
- Fabricate two 1 inch x 3 inch 'microscope' slides per 4-inch silicon wafer
- The slides are re-useable after wet chemical cleans
- Plasma etched microwells have better overall performance (fluorescence response) than the previously used wet chemistry approach

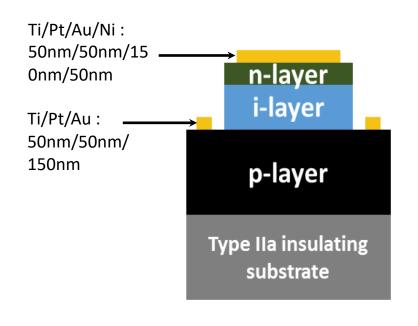


nanofab.engineering.asu.edu

ICP - Isotropic Deep Silicon Etching

"Microwells" Etched Into Silicon Slide

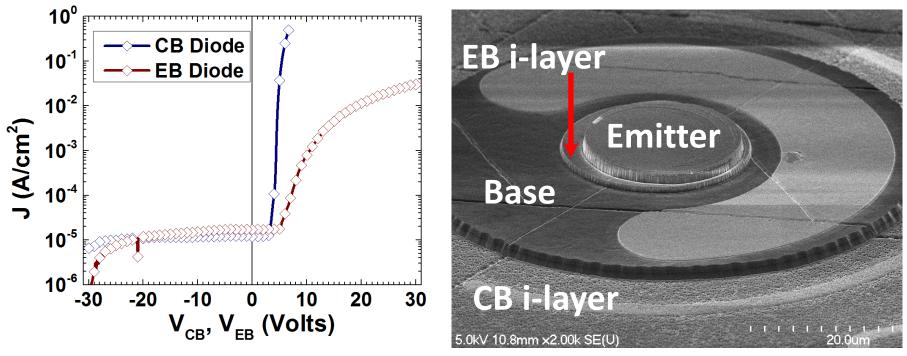
http://nappaproteinarray.org/



nanofab.engineering.asu.edu

Diamond PIN Diode

M. Dutta et al, IEEE Electron Device Lett., vol 37, No.9 pp1170-1173 (2017)



- Homoepitaxial diamond growth (100) and (111) orientated substrates by microwave plasma enhanced CVD
- B and P doping
- Diodes fabricated using conventional mesa etch approach.
- Diamond etched in Oxford Plasmalab M80
 (F) using SiO₂ hard mask.
- **O**2, SF₆
- Best breakdown voltage 3.9 MV/cm in (111) diamond
- Limited by hopping conduction c/o threading dislocations

Knowledge Enterprise Development | NanoFab nanofab.engineering.asu.edu Diamond Bipolar Junction Transistor

(Courtesy of Maitreya Dutta, UC Davis)

- Partial mesa etch on both E-B and C-B diodes showed rectification with a on:off ratio of 10³ at ±30V.
- Low forward current density of E-B diode attributed to current crowding.
- Presence of possible defect states within the bandgap in E-B i-layer increases the ideality factor (>30).
- No modulation or gain is observed in 3-terminal measurements (also because of high series resistance of base).

RIE - Multilevel Shallow Silicon Etching

- Project: Fabrication of a Stellar Coronagraph
- PI: Justin Knight and Oliver Guyon, University of Arizona
- A phase shift mask that leads to destructive interference to suppress starlight to image nearby, faint planetary companions or exoplanets
- Ultimately to be installed on the Subaru Telescope on Mauna Kea, Hawai'i
- A total of 5 photo and etch steps results in 16 discrete levels
- GCA 8500 stepper used for lithography steps
- Plasma-Therm PT-790 RIE used for shallow etches
- CF_4 /Ar with low process power.
- J.M. Knight et al., Proceedings of SPIE, Vol. 10400, pp104000N1-N11, (2017)

nanofab.engineering.asu.edu

RIE - Multilevel Shallow Silicon Etching

Mask Features

~295 μm diameter hexagonal tiling
1237 hexagons
9.10 μm hexagon diameter
16 discrete depths

Etch Depths

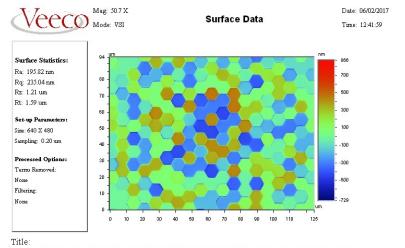
1st exposure: 0.4828 µm

2nd exposure: 0.2414 µm

3rd exposure: 0.1207 μm

4th exposure: 0.0603 μm

5th exposure (Bipolar*): 0.4504 μm


*Bipolar etch changes the mask zero depth reference from the top of the substrate to the midway point of the etch depths.

nanofab.engineering.asu.edu


RIE - Multilevel Shallow Silicon Etching

2D Surface Profile of Coronagraph

Note: Data courtesy of Olivier Guyon and Justin Knight, University of Arizona College of Optical Sciences

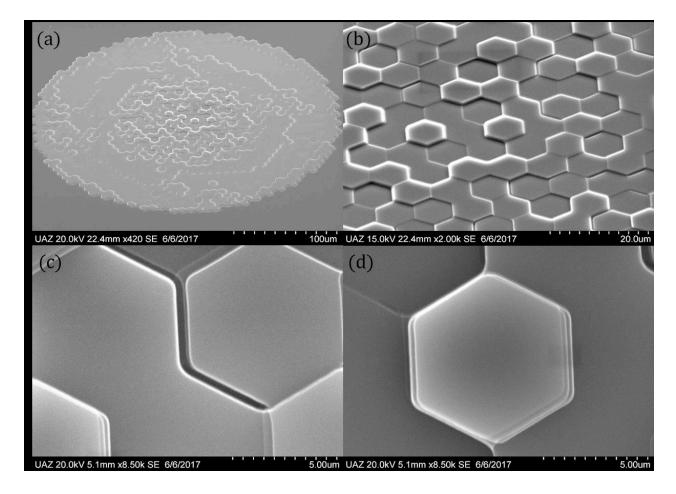
3D Surface Profile of Coronagraph



Note: Data courtesy of Olivier Guyon and Justin Knight, University of Arizona College of Optical Sciences

nanofab.engineering.asu.edu

RIE - Multilevel Shallow Silicon Etching



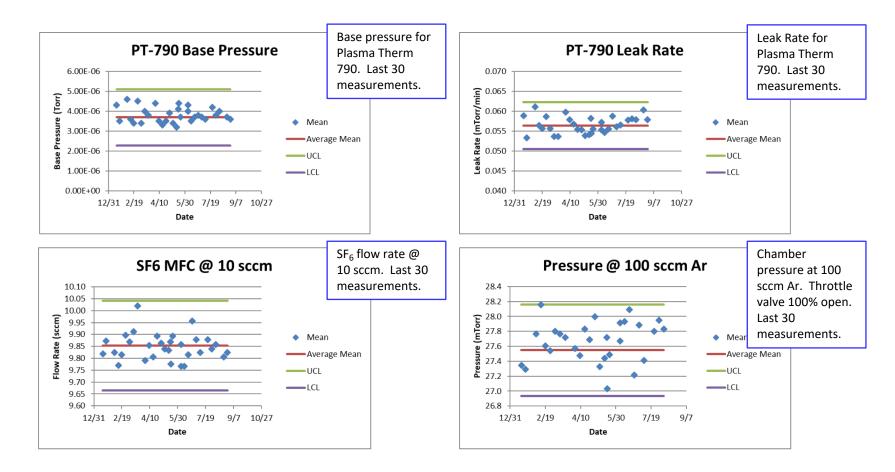
NNCI Etch Workshop Oct 10-11, 2018 - Stanford University

nanofab.engineering.asu.edu

RIE - Multilevel Shallow Silicon Etching

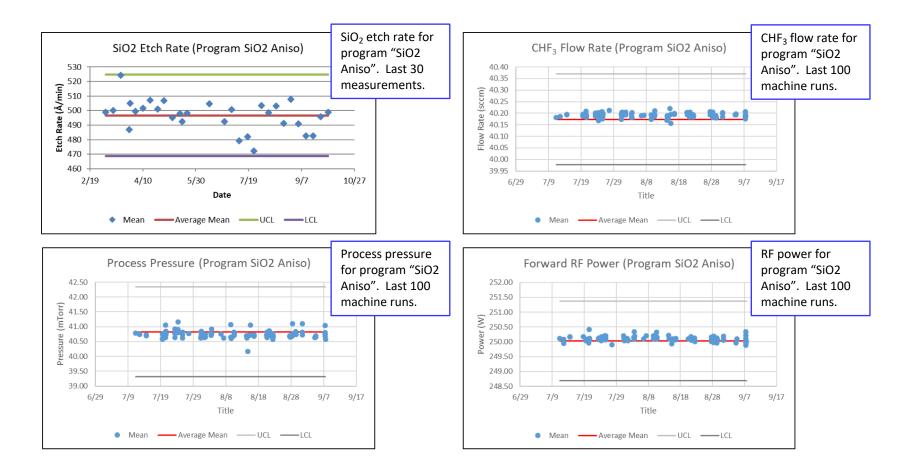
NNCI Etch Workshop Oct 10-11, 2018 - Stanford University

nanofab.engineering.asu.edu


Statistical Process Control

- Statistical process control is now being implemented on the etch tools.
- Typically, both machine and process parameters are monitored.
- Machine Parameters
 - Base pressure
 - Leak rate
 - MFC flow rates
 - Pumping speeds
- Process parameters
 - Etch rates
 - Process pressure
 - Process power
 - MFC flow rates

nanofab.engineering.asu.edu


Typical Machine Parameters

nanofab.engineering.asu.edu

Typical Process Parameters

