Synthesis and Characterization of Crosslinked Lysozyme-Dextran Nanogels for Drug Delivery

Kelsey DeFrates, Rowan University

University of Pennsylvania Singh Center for Nanotechnology REU Program 2017

Principal Investigators: David Eckmann, Russell Composto

Mentor: Olivia McPherson

Conventional drug delivery systems can be inefficient and damaging to non-target organs^{1,2}.

De Jong, W. H.; Borm, P. J. International journal of nanomedicine **2008**, 3, (2), 133-49.
Ferrer, M. C. *et. al. PloS one* **2014**, 9, (7), e102329. doi: 10.1371/journal.pone.0102329.

Core-Shell Nanogels: A Promising Drug Delivery Platform.

- Hydrophobic Core \rightarrow Drug Loading^{2,3}
 - Proteins: Lysozyme
- Hydrophilic Shell \rightarrow Stabilization, Stealth^{2,3}
 - Polysaccharides: Dextran
- Attachment of antibodies for targeted delivery^{2,3}
- Synthesized through Maillard reaction and heat-induced gelation⁴

2.Ferrer, M. C. *et. al. PloS one* **2014**, 9, (7), e102329. doi: 10.1371/journal.pone.0102329 3. Li, J.; Yao, P. *Langmuir : the ACS journal of surfaces and colloids* **2009**, 25, (11), 6385-91. doi: 10.1021/la804288u 4. Li, J.; *et. al. Langmuir : the ACS journal of surfaces and colloids* **2008**, 24, (7), 3486-92. doi: 10.1021/la702785b. Stiffness of nanogels influences cell binding⁵. Crosslinking of shell provides mechanism for controlling nanoparticle stiffness.

5. Anselmo, A. C.; Mitragotri, S. *Advanced Drug Delivery Reviews* **2017**, 108, 51-67. doi: 10.1016/j.addr.2016.01.007.

Table 1: Hydrodynamic diameters and PDI of LDNG before and after oxidation and crosslinking obtained through DLS.

	Batch 1			Batch 2		
Sample	Hydrodynamic Diameter (nm)	Percent Change	PDI	Hydrodynamic Diameter (nm)	Percent Change	PDI
LDNG	259.7		0.061	242.7		0.048
Oxidized LDNG	332.1	+27.9%	0.290	257.6	+6.14%	0.066
LDNG with EOD	347.3	+4.58%	0.312	375.6	+45.81%	0.185
LDNG with DODD	292.3	-12.0%	0.063	402.5	+56.25%	0.119
LDNG with DAD (2.5 mg/mL)	364.4	+9.73%	0.503	518.5	+101.28%	0.222
LDNG with DAD (0.25 mg/mL)	311.7	-6.14%	0.147	500.8	+94.41%	0.257

Nanogel crosslinking verified through ninhydrin assay, a colorimetric test for free amine.

1. Crosslinker remains unreacted

2. Crosslinker is internalized by hydrophobic core

H₂N

3. 1° crosslinking

4. 2° crosslinking

Percent of crosslinker found in each "destination" determined by ninhydrin assay.

2° crosslinking – 1° crosslinking – Internalized – Unreacted

Ē

Nanogels can be imaged with AFM. Single nanogels can also be indented to obtain elastic modulus.

6. Radmacher, M.; et. al. Langmuir : the ACS journal of surfaces and colloids **1994**, 10, (10), 3809-3814. doi: 10.1021/la00022a068.

AFM topographical images of smaller nanogels taken with cantilever with silica probe reveal nanogels successfully grafted to APTES treated surfaces. Average nanogels measure approximately 200 nm in diameter and 30 nm in height.

Force-indentation curve for nanogels is shown. Fitting the entire curve with Hertz model (black) gives modulus of 1.70 MPa, but neglects less steep region of curve.

Fitting of 15% of curve captures shallow region to give modulus of 137.31 KPa, suggesting a twocomponent system

Support for a two-component system is seen in elastic modulus map (B) of aggregate nanogels (A). Aggregate measures approximately 1 μm in diameter and 150 nm in height. Lower modulus influenced by dextran (KPa)^{7,8},while higher by lysozyme core (0.5 GPa)⁹.

7. Kühner, M.; Sackmann, E. Langmuir : the ACS journal of surfaces and colloids 1996, 12, (20), 4866-4876. doi: 10.1021/la960282+.
8. Liu, Y.; Chan-Park, M. B. Biomaterials 2009, 30, (2), 196-207. doi: 10.1016/j.biomaterials.2008.09.041.
9. Radmacher, M.; et. al. Langmuir : the ACS journal of surfaces and colloids 1994, 10, (10), 3809-3814. doi:10.1021/la00022a068.

Conclusions and Future Work

- LDNG crosslinking with three different molecules
 - influences size of nanogels
 - is dependent on initial concentration and type of crosslinker used
- AFM demonstrates
 - success of LDNG grafting
 - deformability of LDNG
- Nanoindentation measurements suggest two-component system
 - Softer region modulus in 100 KPa range
 - Harder region in single MPa range
 - Establishes framework for mechanical analysis of LDNG
- Next step will involve applying this to crosslinked LDNG

Thank you...

Dr. David Eckmann and Dr. Russell Composto for their guidance on this project Olivia McPherson for mentorship and support The Eckmann lab for hosting me Dr. Jacob Myerson for assistance with the ninhydrin assay Dr. Matt Brukman for assistance with the AFM Dr. Kristin Field for coordinating the REU program

Singh Center for Nanotechnology REU Program at the University of Pennsylvania

NSF NNCI Award 15-42153 for the Singh Center's Mid-Atlantic Nanotechnology Hub (MANTH) For Research, Education And Innovation and NIH grant R01EB006818 for supporting my research

