

ALE for Low Loss Quantum Devices

Dr. Russ Renzas

Oxford Instruments Plasma Technology

OI Quantum Technology

© Oxford Instruments 2021

What is "Quantum"?

DiVincenzo Criteria	
 Well-defined qubits Encode in microwave photon, spin, energy level, photon mode 	0>, 1>
Initialization to pure state	000000>
Universal gate set	X, Y, Z, P, CNOT
Qubit-specific measurement	001011>
Long coherence timesLow loss system	$T_1, T_2 >> T_{gate}$
Interconvert stationary & flying qubitsQuantum Transducers	$Chip \leftrightarrow Fiber$
Transmit flying qubits	Repeaters

Common Challenges: Loss & Scale

- Algorithms need <u>many</u> 1Q & 2Q gates
 - High fidelity, high scale
 - Fidelity \uparrow = ECC Overhead \downarrow

- Scale may incur loss
 - Photonics: More susceptibility to missed photon detection events
 - Superconducting: Increased electric field participation in lossy surfaces, JJ tuning
 - Ion Traps: Shuttling losses, ion loss, vibration
- Scale is hard
 - Higher coherence requirements
 - Increased fab & hardware needs

LC Resonator Interfaces

© Oxford Instruments 2021

Surface Loss Impedes Scaling

$Q\downarrow$ as devices shrink \rightarrow Loss Impedes Scaling

*Detailed mechanisms include TLS, quasiparticles, interface dissipation, surface spins...for details see McRae, Corey Rae Harrington, et al. "Materials loss measurements using superconducting microwave resonators." *Review of Scientific Instruments* 91.9 (2020): 091101. and references therein.

Etch Methods (PP80, Cobra 300, IonFab)

Small Parameter Space, Limited Flexibility

Large Parameter Space, Very Flexible

© Oxford Instruments 2021

RIE Chemical and Physical Components

- Chemical Component
 - O_2 for organics $\rightarrow CO_{2(g)}$
 - SF_6 for Nb, $Si \rightarrow NbF_{5(g)}$, $SiF_{4(g)}$
 - Cl_2 for $Al \rightarrow AlCl_{3(g)}$
 - Selectivity, passivation, safety also affect choice
 - · Less sensitive to bias (more isotropic)
- Physical Component (Argon)
 - Physically blast material and/or products off
 - Non-reacting
 - More sensitive to bias (more anisotropic)

Chamber Cleaning & Conditioning ensure process stability over time

Profile Control with RIE

Quantum Materials Etched

© Oxford Instruments 2021

Superconductor Etch Detailed Examples

TiN Etch Profile Control				
Gas chemistry	Etch rate [nm/min]	Profile [°]		
Ar	0	-		
Ar-CHF ₃	10	70		
Ar-BCl ₃	35	45		
Ar-Cl ₂	230	88		

J. Tonotani et al, J. Vac. Sci. Technol. B 21.5., Sep-Oct 2003 doi: 10.1116/1.1612517

Vertical Nb profile			
System	PlasmaPro 100 ICP		
Process gases	CF ₄ -Ar		
Depth	330nm		
Etch rate	29nm/min		
Uniformity	±1.4% (100mm wafer)		
Selectivity PR mask	0.8:1		
Selectivity SiO ₂ underlayer	1.2:1		

Surface Damage in RIE

© Oxford Instruments 2021

Low damage for minimal influence top layers

← ALE

Increasing ion energies

Conventional etching \rightarrow

From O. Joubert, SEMATECH Workshop on Atomic-Layer-ETch (ALET) and - Clean (ALC) Technology, April 21, 2014

• ALD and ALE provide control and low damage options to allow minimal influence on sensitive surfaces.

Two Types of ALE

Reduced Subsurface Damage

Isotropic ALE (FlexAL ALD)

Directional ALE (Cobra ICP RIE)

Chittock, Nicholas J., et al. "Isotropic plasma atomic layer etching of Al2O3 using a fluorine containing plasma and Al (CH3) 3." *Applied Physics Letters* 117.16 (2020): 162107.

Basic Thermal Desorption ALE

Reaction-Assisted Thermal ALE

Use Chemistry to Engineer Volatile Species

- Chelation (oxidize and remove)
 - Form surface oxide, chelate oxide to form volatiles
- Ligand Exchange
 - Form metal fluoride, remove via ligand exchange with selective precursor, all products volatile
- Conversion
 - Exchange metallic element with one that's amenable to other ALE methods (e.g. SiO₂ to Al₂O₃)
- Oxidation/Fluorination
 - Form surface oxide, react with F to form volatiles

Isotropic ALE

<u>BUT</u>

1. Frequently requires HF

2. Thermal ALD deposition less flexible

See "Atomic Layer Processing" by Thorsten Lill for more

Generalized ALE/ALD cycle

© Oxford Instruments 2021

FarlazTetPalAL Volid State-Schivechnolia, 0502B (2015) L

Isotropic ALE using TMA and SF₆ plasma

SC Nitride ALD also in FlexAL

© Oxford Instruments 2021

ALD/i-ALE Supercycles (Al₂O₃)

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

© Oxford Instruments 2021

What about Directional ALE?

Jaffal, Moustapha, et al. "Topographical selective deposition: A comparison between plasma-enhanced atomic layer deposition/sputtering and plasma-enhanced atomic layer deposition/quasi-atomic layer etching approaches." *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films* 39.3 (2021): 030402.

Directional ALE: How it Works

Directional ALE Process Examples

- Si
 - Etch rate 2 to 7Å/cycle (up to 70Å/min)
 - Cl₂ dose step, Ar etchant

- MoS₂
 - Small shift in peaks per 3ALE cycle
 - 40 ALE cycles removed all material
 - Starting thickness 18nm
 - Cl₂ dose step, Ar etchant
 - Low damage with no defect induced peak at 227 cm-1

25nm wide Si trenches etched to 110nm depth by ALE, HSQ mask still in place

Raman spectra after 17, 20 and 23 ALE cycles

Directional ALE Process Example

AlGaN/GaN ALE with Ar/Cl₂

- Etch rate 1.5-3 Å/cycle
 - up to 18 Å/min
- Added roughness <<1nm
 - AFM data indicates a smoothing effect

AlGaN etching rate per cycle

AlGaN surface roughness after 200 cycles (bottom), before etching (*top left*) and after etching (*top right*)

AFM data courtesy of Paolo Abrami in Collaboration with Bristol Uni

Directional ALE for Color Centers

DOI: 10.1021/acs.nanolett.5b01346, Nano Lett. 2015, 15, 5131-5136

Sensitivity scales with distance to NV center (r) and spin coherence time (T_2)

Many Defect Hosts and Types T₂ Strongly Impacted by Surface Condition Will ALE enable higher-sensitivity quantum sensors?

Premium ICP Etcher

- PlasmaPro 100 Cobra
 - Loadlocked, clusterable, up to 200 mm wafers
 - Wide power range: 5-1000 V bias, 3/6kW ICP
 - 300 mm ICP source, available heated liners
 - Compatible with ALE, Turbo, Active Uniformity Control
 - Large process library at OIPT apps labs & in literature

PTIQ

Switch from RIE to ALE during recipe

© Oxford Instruments 2021

ALE vs. ALD

Make Better Devices with Oxford Instruments

- Surface Losses are major issue
 - Superconducting: SA effect on Q_i. TLS, T₁, T₁ fluctuations
 - Color centers: T₂ decrease for near-surface NVs. ZPL fluctuations
 - Photonics: Waveguide scattering loss. SPE linewidth broadening
- Conventional RIE can damage surfaces
 - Sputtering damage (straggle), implantation, diffusion
- Low damage etches offer path to lower loss
 - ICP-RIE optimized for low-damage
 - Atomic layer etch
 - Bulk etch with ICP-RIE, remove damaged layer with in-situ ALE

OI Quantum Technology Solutions portfolio

© Oxford Instruments 2021

Q_i = Device Fab Metric

Woods, Wayne, et al. "Determining interface dielectric losses in superconducting coplanar-waveguide resonators." *Physical Review Applied* 12.1 (2019): 014012.

T1 (usec)

T1 vs. Quality Factor at 5 GHz

Huge Range of Photonic Materials Etched

Correlative imaging identifies structures of interest

Raman image (1330 cm⁻¹)

Photoluminescence image

Intact diamond pillars

NV centers or contaminations

Signal in both pictures: micropillars with NV centers (arrows)

- Sample: diamond micropillars with NV centers
- Aim: identify structures of interest (single NV centers)

Sample courtesy of Dr. Rainer Stöhr and Prof. Dr. Jörg Wrachtrup from the 3rd Physics Institute at the University of Stuttgart, Germany.

Single-photon emitter: Minimum inter-photon time depends on excited-state lifetime

Heat Map Excitation vs. Emission

Developed for other applications, useful for color center characterization.

AFM-Confocal correlative microscope also available.

Bad Surfaces are Lossy

Surface Loss Common Across Modalities

© Oxford Instruments 2021

Exploit Quantum Properties for New Computation

- Classical Computing = AND, OR, NOT, NAND, flipflops...
 - Capacitors/RAM = Memory element (Binary)
 - Transistor = Switching element (logical gate operations)
- QC = Entanglement, interference
 - Qubit = Memory element (Complex Number)
 - Microwaves or lasers = Switching element (quantum gate operations)

Silvestri, Riccardo. (2020). Business Value of Quantum Computers: analyzing its business potentials and identifying needed capabilities for the healthcare industry.

Classical Bit

Qubit