Photonic Integration and Acousto-Optics in Aluminum Nitride

Siddhartha Ghosh

Microscale Acoustic and Photonic Systems Laboratory Department of Electrical and Computer Engineering Northeastern University Boston, MA 02115 <u>s.ghosh@northeastern.edu</u>

NNCI Etch Symposium University of Pennsylvania, Philadelphia, PA April 22, 2022

- Motivation and background
- Material selection
- Light coupling in AIN
- Acousto-optic modulator
- 200-mm process development

 Optical links provide several advantages for controlling radio frequency (RF) signals in various communications applications

- ✓ Increased channel capacity
- ✓ Frequency-independent low-loss delay lines –

Coherent Microwave-to-Optical Conversion: A Quantum Interface

- Optical fibers can be used to transmit photons over long distances with very low loss
- Reversible coherent conversion between microwave and optical regimes can facilitate coupling of qubits in different cryostats
- Other applications include
 - Interface for components of a hybrid quantum system, e.g. a quantum network
 - High-bandwidth routing of control and readout signals from/into a cryostat
 - Optical detection of microwaves for radar, medical imaging, classical communication, navigation, etc.

A quantum interface is an enabling technology for robust quantum computers and networks

MEMS for Integrated RF-Photonics

 MEMS technology has been widely demonstrated for its compact filtering capabilities, CMOS compatibility and use in RF reference oscillators

Nguyen & Howe, JSSC 34, 1999

Piazza et al., JMEMS **16**, 2007

Bochmann et al., Nat. Physics 9, 2013

- Piezoelectric actuation offers:
- Scaling to higher/ multiple frequencies with lithographically-defined features
 - Strong electromechanical coupling
 - ✓ Low motional impedances/Matching to 50 Ω electronics
- Advances in cavity optomechanics have produced highly sensitive detection techniques with useful applications in communications and fundamental science

We seek to capitalize on these capabilities by creating devices that function in both the acoustic and optical domains

Integrated Photonic Material Options

Function / Property	III-V Compound Semiconductors (InP, GaAs, GaN)	Silicon (Si) + Germanium (Ge)	Silicon Dioxide (SiO ₂) & Silicon Nitride (Si ₃ N ₄)	Lithium Niobate (LiNbO ₃)	Aluminum Nitride (AIN)	Polymers	Hexagonal Silicon Carbide (4H-SiC)
Efficient Light Emission	Direct Bandgap						
Efficient Light Detection							
Electro-Optic Modulation							
Electro-Absorption Mod							
Free-Carrier Modulation							
Thermo-Optic Modulation							
Piezoelectric							
Acousto-Optic Modulation							
Low-Loss Passives							
Efficient Nonlinearities	2 nd & 3 rd order	3 rd order	3 rd order	2 nd & 3 rd	2 nd & 3 rd	2 nd & 3 rd	2 nd & 3 rd
High-Power Handling							
Monolithic Electronics							
Foundry Compatible							

Grating Coupler Design

Approximate grating pitch from Bragg condition:

$$\frac{1}{\Lambda} = \frac{n_{eff}}{\lambda} - \frac{n_o}{\lambda}\sin\theta$$

Fix: $\theta = 8^{\circ}$, $t_{AIN} = 400$ nm, SiO₂ cladding, $\lambda = 1550$ nm

Polycrystalline AIN: 400nm thick

AIN Photonics and AO devices - 7 SG 04/22/22

Grating Coupler Simulation

AIN Photonics and AO devices - 8 SG 04/22/22

Fabrication

Grating Measurements

Measured Transmissivity (dB)

⁻¹⁸ 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 Wavelength (nm)

AIN Photonics and AO devices - 10 SG 04/22/22

AIN Photonics and AO devices - 12 SG 04/22/22

AIN Photonics and AO devices - 15 SG 04/22/22

E-beam Lithography of Gaps and Gratings + 2nd Partial etch

Vapor HF Release of CMR and WGM Resonators

AIN Photonics and AO devices - 17 SG 04/22/22

Integrated Modulator Device

Acousto-Optic Modulator Characterization

- Device characterization is done for both types of resonator
- Acoustic resonator tested with RF ground-signal-ground probes to extract S₁₁ parameters
- Optical resonator tested with fiber array
- Simultaneous probing for electrooptomechanical characterization (via S₂₁ or Spectrum Analyzer)

• Modified Butterworth van Dyke (MBVD) equivalent circuit model:

Forward Transmission (S₂₁) – Electro-Optomechanical Measurement

AIN Photonics and AO devices - 22 SG 04/22/22

Applied Materials Centura Metal Etch							
		Variables:	Best Condition:				
	ICP Power (W)	{1000, 1200}	1000				
	Bias Power (W)	{100, 125}	125				
F	Pressure (mTorr)	{4, 6, 15}	6				
	Cl2 flow (sccm)	$\{0, 40, 82, 120\}$	120				
E	3Cl3 flow (sccm)	{0, 10, 20, 58, 100}	10				
	Ar flow (sccm)	{0, 20, 40, 80}	40				
٦	Total flow (sccm)	{100, 160, 170, 180, 220}	170				
	Etched Result:	Angle	~65°				

Variables:	Best Condition:
{600}	600
{200}	200
{0.4, 0.7, 1.1}	0.4
{14, 20, 30, 40, 65, 90}	40
{0, 5, 10, 15, 40}	10
{0, 6, 10, 15}	0
{20, 30, 35, 40, 50, 115}	50
Angle	~65°
	Variables: {600} {200} {14, 20, 30, 40, 65, 90} {0, 5, 10, 15, 40} {0, 6, 10, 15} {20, 30, 35, 40, 50, 115} Angle

SAMCO Metal Etch

Initial Optical Ring Resonator Measurements

Target Q achievable through: 5-10X enhancement for disk resonator geometries 2-3X improvement from etching optimization

- AIN is an excellent platform for photonic integration targeting applications in RF-Photonics as well as quantum information processing
- Low-loss gratings and waveguides have been demonstrated with sputtered AIN thin films
- Piezoelectric and photonic resonators are successfully co-fabricated to demonstrate displacement-based acousto-optic modulators
- Further improvements to processing will enable microwave-to-optical frequency converters in 200-mm platform

LVX VERITAS VIRTVS

Carnegie Mellon University:

- Prof. Gianluca Piazza
- Matt Moneck
- Norm Gottron
- James Rosvanis
- National Science Foundation (NSF ECCS-1201659)

MITLL Quantum Transducer team:

- Dave Kharas
- Danna Rosenberg
- Alex Medeiros
- Matt Cook
- Cyrus Hirjibehedin
- Paul Juodawlkis

Northeastern University:

- Jack Guida
- Michele Pirro
- Prof. Matteo Rinaldi

Supplementary

Optical-to-Microwave Photon Conversion

High-efficiency, high-bandwidth, low-noise conversion requires overcoupled resonators, strong coupling between resonators, and low resonator losses

AIN Photonics and AO devices - 28 SG 04/22/22

Overview of Recent Work

	Electro-static	Piezo-based	Electro-optic
Efficiency	47% [1]		
Coupling strength g_0	few Hz [1]	10's kHz to MHz [2,3,4]	100's Hz [5,6]
Noise			
Scalability			

1. Higginbotham et al, Nature Physics (2018)

2. Han et al, arXiv (2020)

Forsch et al, Nature Physics (2020)
Mirhosseini et al, Nature (2020)

5. Fan et al, Science Adv. (2018)6. Holzgrafe et al, arXiv (2020)

Piezo-mechanical and Opto-mechanical Coupling

AIN as a photonic material: CMOS integrable, piezoelectric, elasto-optic effects, with low optical losses

	Si	SiO ₂	Si ₃ N ₄	GaAs	GaN	LiNbO ₃	AIN
Index (1550 nm, Ordinary)	3.47	1.45	~2.0	3.37	2.31	2.21	~2.04
Bandgap	1.12 eV	8.9 eV	5.1 eV	1.43 eV	3.4 eV	4.0 eV	6.2 eV
Optical losses (α) in integrated structure	0.3 dB/cm Waveguide (Cardenas et al., 2009)	0.007 dB/cm <i>Microtoroid</i> <i>resonator</i> (Polman et al., 2004)	0.055 dB/cm <i>Ring</i> resonator (Gondarenko et al., 2009)	0.5 dB/cm Waveguide (Inoue et al., 1985)	0.65 dB/cm <i>Waveguide</i> (Stolz et al., 2011)	2.03 dB/cm Disk resonator (Wang et al., 2014)	0.6 dB/cm <i>Ring</i> <i>resonator</i> (Xiong et al., 2012)
Piezoelectric	X	X	X	$d_{31} = 0$ $d_{33} = 0$ $d_{14} = -2.7$ pC/N	d ₃₁ = -1.9 pC/N d ₃₃ = 3.7 pC/N	d ₃₁ = -1 pC/N d ₃₃ = 6 pC/N (Z-cut)	d ₃₁ = -1.98 pC/N d ₃₃ = 4.98 pC/N
Elasto-Optic	X	X	X	p ₁₁ = -0.026	p ₁₁ = -0.086* (estimated)	p ₁₁ = -0.026	p ₁₁ = -0.10* (estimated)

*S. Yu. Davydov, Semiconductors 36, 41-44 (2002); G. Bu, et al., Appl. Phys. Lett. 85, 2157 (2004).

Modulation of Mechanically-Actuated Structures

i) Mechanical displacements perturbing WGM resonator

Laser Power in

Modulated Transmission

$$\Delta T(x,n) = \frac{\partial T}{\partial x} \Delta x$$

ii) Mechanical displacements perturbing waveguide end-coupling

 $\Delta T(z,n) = \frac{\partial T}{\partial z} \Delta z$

iii) Strain-induced refractive index changes

Laser Power in

Modulated Transmission

Optomechanical Modulation Model

Displacement and Refractive Index Based Modulation

Resonance condition:

$$n_{eff} L = m\lambda_o$$

$$n_{eff} (2\pi R) = m\lambda_o$$

$$(n_{eff} + \Delta n_{eff}) 2\pi R = m(\lambda_o + \Delta \lambda)$$
$$\frac{d\lambda}{dn_{eff}} = \frac{\lambda_o}{n_{eff}}$$

Where dn_{eff} is produced by piezoelectrically generated strain

Test Setup

AIN Photonics and AO devices - 35 SG 04/22/22

Photonic Resonator Coupling

Vary Gap Widths to Microdisks

AIN Photonics and AO devices - 37 SG 04/22/22

Experimental Results

Consider a thin rectangular plate cross-section:

AIN Photonics and AO devices - 39 SG 04/22/22

Device geometry

- Extended CMR generates lateral strains (S₁)
- Refractive index change for TE mode
 AIN p₁₁ = -0.1*:

$$\Delta n_1 = -\frac{1}{2} n_1^3 p_{11} S_1$$

• Enhance sensitivity to strain by incorporating waveguide into a photonic racetrack resonator:

Optical intensity modulation:

$$P_{\text{mod}} = \frac{dT}{d/} \cdot \frac{d/}{dn_{eff}} \cdot \mathsf{D}n_{eff}$$

AIN Photonics and AO devices - 40 SG 04/22/22

^{*}Davydov, Semiconductors **36**, 2002

Optical mode overlap

Fabricated devices and characterization

- Similar processing and testing procedure to displacement-based modulator
- Acoustic resonators fabricated with $\lambda = 40 \ \mu m$ and $\lambda = 8 \ \mu m$
- Design is extendable to smaller wavelengths (higher frequencies) of interest for microwave-optical conversion

S₂₁ elasto-optic device response

Optomechanical Device Actuation

i) Radiation Pressure Driven:

Silica microtoroid optomechanical oscillator (Hossein-Zadeh et al., Phys. Rev. A **74**, 2005):

Silicon nitride optomechanical oscillator (Tallur et al., Opt. Express **19**, 2011):

ii) Electrostatically Driven:

Silicon microdisk resonators (Sridaran & Bhave, Opt. Express **19**, 2011):

End-coupled Indium Phosphide Waveguides (Preussner et al., J. Micromech. Microeng. **16**, 2006):

iii) Piezoelectrically Driven:

AlN ring actuated with suspended RF probe: (Xiong et al., Appl. Phys. Lett. **102**, 2013):

AlN optomechanical crystal: (Bochmann et al., Nat. Physics **9**, 2013):

Development Overview

Light Coupling

Integration Challenges

Oxide etching and release

• Electrode patterning and AIN etching

Process Modifications – Partial Etch Method

	<u>Identified</u> <u>Issue:</u>	Solution:				
1	Release window	Complete release with HF etch – using partially etched AIN as a hard mask				
	Metals	Primary focus on Dual-Ring or Dual- Disk structures (separated excitation)				
	Anchors	Change anchor points – increase number symmetrically, but reduce width				
507	Buckling	Use a curved/recessed waveguide at the point of approach [cannot have more than 40 µm suspension]				
	Stress	Removal of oxide with wet release should relieve uncontrolled stress in oxide & use a thicker top metal to ensure step coverage				
	Oxide removal	Partial etch will keep gratings protected; Wet release at the end will automatically remove any PECVD oxide (if required as a hard mask)				
	WGM Coupling	Performing release in a single step at the end with HF avoids any effects from release window; May need to focus on the use of sub-100nm gaps				

- ➢ Fix 300 nm AIN thickness
- Select partial etch slab thickness for rib waveguides and gratings: 80 nm

Set WGM R_{out} = 40 μm, and thick ring width = 6 μm

Power Sweeping – Peak Modulation

• VNA operated in CW at $f_{res,mech}$, Output on spectrum analyzer

Additional XeF₂ Release

Opto-Acoustic Oscillator Loop

Operating conditions

Opto-Acoustic Oscillation

- Circuit built with coaxial SMA components satisfies Barkhausen criteria
- Gain provided by 2 cascaded RF amplifiers, producing a net gain of ~66 dB
- High Pass Filter (HPF) used to exclude low frequency spurious modes in S₂₁ transmission

Phase Noise Measurement

 $f_L = (f_{carrier}/2Q_{mech}) \approx 725 \text{ kHz}$ (matches experiment) Schematic of the loop as tested:

- Individual components were measured for loss contributions
- Some additional losses present in the connections – but this provides us an estimate for P_{sig}

Phase Noise Model

• ρ_N is the additive noise, originating at the photodetector:

 $\rho_N = Thermal \ noise + Shot \ noise + Laser \ RIN$

$$\rho_N = (4k_B T \cdot NF) + (2eMF_A \sqrt{P_{sig}R_{PD}}) + (N_{RIN}P_{sig})$$

Where:

- k_B: Boltzmann's constant
- T: Ambient temperature
- e: electron charge
- M: APD multiplication factor
- F_A: APD excess noise factor
- R_{PD}: APD load resistor
- N_{RIN}: Laser Relative Intensity Noise
- NF: Amplifier Noise Factor
- A: Amplifier Gain

Main Contributions to Phase Noise

• Using losses in the loop, estimate: $P_{sig} = -54.29$ dBm

- Net $\rho_N = 3.95 \times 10^{-20}$ W/Hz, producing a noise floor of -113 dBc/Hz
- Low photocurrent generated by P_{sig} causes thermal noise contribution to dominate

Modulator Analytical Transfer Function

• Description of modulation capability:

➡ • For the measured S₂₁ = -56dB, this yields $\underline{n}_{om} = 26 \text{ pm/V}$

Piezo-Optomechanical Transduction Capability

▲ 2.87×10⁻⁹ ×10⁻¹⁰ (m)

20

15

у у х

- FEM simulations confirm the η_{om} transduction capability is diminished due to mismatch in the modes of the CM and WGM rings
- This produces displacement in the WGM ring, in which Δr does not correspond to that of the radial contour mode, but rather generates an average displacement Δr_{avg}

Deformation

1000x amplified:

• Fully coupled into WGM:
$$\Delta r = Q_{mech} \left(\frac{F_{piezo}}{m_{eff} \Omega_{mech}^2} \right) = Q_{mech} \left(\frac{2d_{31}E_{eq} \left(2\pi R_{avg} \right) V_{rms}}{m_{eff} \Omega_{mech}^2} \right)$$

• Resulting in effective η_{om} capability: $\eta_{om} = Q_{mech} \left(\frac{4\pi d_{31}E_{eq}R_{avg}}{m_{eff} \Omega_{mech}^2} \right)$

2-3 orders of magnitude higher than that currently produced

PN Expectation with Improvements to η_{om}

• All other factors remaining the same (Q_{opt} = 25,000, Optical transmission losses, $P_{carrier}$, Mismatch losses at input), compute η_{om}

• Improvements in the S₂₁ can also be attained by tuning a host of

 10^{7}

- P_{trans} (determined by gratings)
- Q_{opt} Generate S₂₁ gain
- 50 Ω matching

Carnegie Mellon

G

Optical resonators using 400 nm thick LPCVD SiN

MASSACHUSETTS INSTITUTE

s - 29

DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government agencies and their contractors – NOT APPROVED FOR PUBLIC RELEASE

EB-ALNWG01

- Etched several wafers using an oxide hard mask and EB-ALNWG01 Aluminum Nitride etch.
 - Wafer 0 (AINQT03 -20) & ALNQT04 wafers 1 & 4,
- 300-400nm Aluminum Nitride sputtered by OEM group
- 300 nm oxide hard mask needed
- Patterning using JSR 500nm resist w 65nm BARC
- Oxide open using EBA-SIPWGOX28 (15 sec Barc etch, and 50 sec Oxide etch)
 - Etch was developed as part of the IONPH008X aluminum oxide improvement DOE, where we tried to have an oxide opening ethch with good JSR selectivity and reduced polymer formation.
 - OX ER ~6.7nm/sec, JSR ER ~4.1nm/sec
- Aluminum Nitride etch EB-ALNWG01
 - Etch seems to slow down with time and not clear at the bottom
 - Etch is sloped 65 deg, shows micro trenching at edges
 - Accelerated etch into silicon is seen.
 - Etch is not uniform across the wafer surface-some evidence of polymer residues on surface. Mottled surface appearance in places, perhaps where oxide hard-mask thickness variability on the surface or polymer residues?
 - ALN ER ~1.65-2.4 nm/sec

Ox HM ER ~1.3 nm/sec

EB-ALNWG02

- Etched several wafers using an oxide hard mask and EB-ALNWG01 Aluminum Nitride etch.
 - ALNQT04 wafers 16, 17 (ALNQT03 E6, E7) and ALNQT04 w3,
- Wafers were had ALN deposited at Northeastern University, and wafer 3 had OEM ALN.
- 200 nm oxide hard mask used on wafer 16 and 17, but insufficient used 300 nm sequel oxide on wafer 3
- Patterning using JSR 500nm resist w 65nm BARC
- Oxide open using EBA-SIPWGOX28 (15 sec Barc etch, and 35 sec Oxide etch)
- Aluminum Nitride etch EB-ALNWG02
 - Etch seems to slow down with time and not clear at the bottom
 - Etch is sloped 65 deg, shows micro trenching at edges
 - Accelerated etch into silicon is not seen to the same extent as 01 etch
 - OEM and NE ALN appear to etch at different rates,
 - NE ALN etched at ~2 nm/sec,
 - OEM ALN ER ~1.4 -1.9 nm/sec
 - Ox HM ER ~1.36 1.6 nm/sec
 - Resist consumption rate ~ 3.3 nm/sec (averaged across all steps)

AIN Photonics and AO devices - 66 SG 04/22/22

EB-ALNWG01.rcp									
File Help	nour (r								
Step:	Step	1	Ste	p 2		Step 3		Step 4	
StepName:	STAB1		TIN-TI		MAIN		DECHUC	DECHUCK	
Chamber Selection:	-B		-B		-B		-B12	-B12345	
Step end control:	By Time	~	By Time 🗸		By Time 🗸		By Time	By Time 🗸	
Maximum step time:	10.0 sec	onds	5.5 seconds		180.0 seconds		5.0	seconds	
Endpoint Selection:	No Endpoint	lo Endpoint V No Endpoint V		External Endpoint 🗸		No Endp	No Endpoint 🗸		
					Algorithm I	D:3			
endpointParams:					Min Endpo	int Time: 100	Secs		
Pressure Control:	Servo to xxx mTorr 🗸		Servo to xxx mTorr 🗸		Servo to xxx mTorr 🗸		No Press	No Pressure Control V	
Pressure:	10 mT	10 mTorr		10 mTorr		6 mTorr		mTorr	
Bias Power:	0		100		125		0		
RFMode:	0		0		0		0		
DC Bias Limit:	-1000 to 0		-1000 to	0	-1000 to	0	-1000	to 0	
Source Peak Power:	0 W		1200 W		1000 W		0	W	
Process Position:	N/A 🗸		N/A 🗸	•	N/A	~	N/A	~	
Temperature:	14.0 °C		14.0 °C		14.0 °C		1.0	1.0 °C	
Gas1:	BCL3	0	BCL3	0	BCL3	20	N2-20	10	
Gas2:	CL2	80	CL2	80	CL2	120			
Gas3:	N2-20	0	N2-20	0	N2-20	0			
Gas4:	ARB	40	ARB	40	ARB	40			

- Low chamber pressure (maybe can try 4 mT if the plasma can stabilize)
- High ICP power
- Changing the Cl2/BCl3 blend (typically higher flow on BCl₃ than Cl₂, blended in seems to help the etch rate and selectivity for III-V's)
- Minimizing Ar flow unless we have a lot of re-deposition on the substrate (Ar is physical and might hurt the SiO2 selectivity)

- Main etch: (1/27/21)
- 6 mT
- 1000 W source (ICP)
- 20 sccm BCI3
- 120 sccm Cl2
- 40 sccm Ar
- 125 W bias
- Wafer: AINQT04_W0 (slot 20)

- Main etch: (2/3/21)
- 4 mT
- 1200 W source (ICP)
- 20 sccm BCI3
- 80 sccm Cl2
- 40 sccm Ar
- 125 W bias
- Lower pressure, higher power → no effect on slope, negative impact on selectivity

BGPI = 4.0 mm

• Wafer: AINQT03_E7

Northeastern University

ALNOT04 WE7 ALNFULL cent 0

Stade at R = 16.0 °

Main etch: (4/2/21)

- 6 mT
- 1000 W source (ICP)
- 10 sccm BCI3
- 120 sccm Cl2
- 40 sccm Ar
- 125 W bias
- Wafer: AINQT04_W17

- Main etch: (4/2/21)
- 6 mT
- 1000 W source (ICP)
- 0 sccm BCI3
- 120 sccm Cl2
- 40 sccm Ar
- 125 W bias
- Wafer: AINQT04_W18

Main etch: (4/15/21)

- 6 mT
- 1000 W source (ICP)
- 58 sccm BCI3
- 82 sccm Cl2
- 40 sccm Ar
- 125 W bias

Adapting from AI in C400:

- Bias 250 ICP 250
- Pressure .4Pa Pos 100%
- CI2 14sccm / AR 6sccm / BCI3 10sccm

• Wafer: AINQT04_W19

Main etch: (4/22/21)

- 6 mT
- 1000 W source (ICP)
- 20 sccm BCI3
- 40 sccm Cl2
- 40 sccm Ar
- 125 W bias
- Wafer: AINQT04_W20

Main etch: (4/26/21)

- 15 mT
- 1000 W source (ICP)
- 20 sccm BCI3
- 120 sccm Cl2
- 40 sccm Ar
- 125 W bias
- Wafer: AINQT04_W21

AMAT Etch Trials grouped by Variable

Appled Materia	is Centura	Etcher												
	fixed newor red					roducod (12 increasing	RCI2			on flow			
	inted power, red					leuuceu c	12, IIICI Casilig	DCIS		Higher Ai	gonnow			
Wafaa ID		20		10		20	10	27		20	622			
water ID	water 1,4	26	1/	18		20	19	2/		26	BZ3			
Recipe variant	WG01 POR	POR	WG01_V1	WG01_V2		WG01_V4	WG01_V3	EB-ALOX36		POR	WG01_V7			
ICP	1000	1000	1000	1000		1000	1000	1200		1000	1000			
BIAS	125	125	125	125		125	125	100		125	125			
Press	6	6	6	6		6	6	4		6	6			
Cl2	120	120	120	120		40	82	0		120	120			
BCI3	20	20	10	0		20	58	100		20	20			
Ar	40	40	40	40		40	40	0		40	80			
total flow	180	180	170	160		100	180	100		180	220			
CI2/BCL3 ratio	6	6	12			2	1.41			6	6			
etch angle	66	50.4	66	57		47	39	47		50.4	57			
etch time	120	50	100	100		50	50	70		50	50			
depth	160	228	380	397		134	163	63		228	245			
			etched throw	wh etched through	ough	-					-			
Etch rate		4.56	3.80	3.97		2.68	3.26	0.90			4.90			
			5.00	worse		higher PC	3 worse	2.50						
				WOISE		ingrier DC	LUWUISC							
			Increase P			resist only	etching alli	minate impa	t of oxide	etch hypr	oducts			
Wafer ID	water 1.4	26	21	EC ET		20	21	22	a or oxide	eten bypi				
Posino variant	WG01 POP	POP	21 WG01 \/F	E0,E7		DOP	51 WC01 V10	52 WG01 V11						
	1000	1000	1000	1200		1000	1000	1000					variables	Bost Condition
PLAC	100	100	1000	1200		125	1000	200					1000 1200	1000
BIAS	125	125	125	125		125	100	200					1000, 1200	1000
Press	120	5	120	4		120	6	120				BIAS	100, 125	125
	120	120	120	80		120	100	120				ress mtor	4, 6, 15	6
BCI3	20	20	20	20		20	10	20				CI2	0,40,82,120,	120
Ar	40	40	40	40		40	20	40				BCI3	0,10,20,58,100	10
total flow	180	180	180	140		180	130	180				Ar	0,20,40,80	40
CI2/BCL3 ratio	6	6	6	4		6	10	6				total flow	100,160,170,180,220	170
etch angle	66	50.4	4/	66		58	45	40						
etch time	120	50	50	25		45	45	45					angle	65 deg
depth	160	228	263	53		145	130	220						
				L										
Etch rate	1.33	4.56	5.26	2.12		3.22	2.89	4.89						
				_										
		WGOX14	roducos											
			reduces	maintains		resist only	resist only	resist only						
			etch	maintains etch		resist only 7.4	resist only 8.4	resist only 4.8						
			etch angle	maintains etch angle		resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
			etch angle	maintains etch angle		resist only 7.4 <mark>0.44</mark>	resist only 8.4 0.34	resist only 4.8 1.02						
			etch angle	maintains etch angle		resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
			etch angle higher Bias	maintains etch angle lower bias	higher bias and icp	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID	wafer 1,4	26	etch angle higher Bias B22	maintains etch angle lower bias B25	higher bias and icp B24	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant	wafer 1,4 WG01 POR	26 POR	etch angle higher Bias B22 WG01_V6	maintains etch angle lower bias B25 WG01_V9	higher bias and icp B24 WG01_V8	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP	wafer 1,4 WG01 POR 1000	26 POR 1000	etch angle higher Bias B22 WG01_V6 1000	maintains etch angle lower bias B25 WG01_V9 700	higher bias and icp B24 WG01_V8 1200	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS	wafer 1,4 WG01 POR 1000 125	26 POR 1000 125	etch angle higher Bias B22 WG01_V6 1000 200	maintains etch angle lower bias B25 WG01_V9 700 50	higher bias and icp B24 WG01_V8 1200 200	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press	wafer 1,4 WG01 POR 1000 125 6	26 POR 1000 125 6	higher Bias B22 WG01_V6 1000 200 6	maintains etch angle lower bias B25 WG01_V9 700 50 6	higher bias and icp B24 WG01_V8 1200 200 6	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Cl2	wafer 1,4 WG01 POR 1000 125 6 120	26 POR 1000 125 6 120	higher Bias B22 WG01_V6 1000 2000 6 120	maintains etch angle lower bias B25 WG01_V9 700 50 6 120	higher bias and icp B24 WG01_V8 1200 6 6 120	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Cl2 BCl3	wafer 1,4 WG01 POR 1000 125 6 120 20	26 POR 1000 125 6 120 20	etch angle higher Bias B22 WG01_V6 1000 200 6 120 20	maintains etch angle B25 WG01_V9 700 50 6 120 20	higher bias and icp B24 WG01_V8 1200 6 120 200	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Cl2 BCl3 Ar	wafer 1,4 WG01 POR 1000 125 6 120 20 40	26 POR 1000 125 6 120 20 40	bigher Bias B22 WG01_V6 1000 200 6 120 20 40	maintains etch angle Bower bias B25 WG01_V9 700 50 6 120 20 40	higher bias and icp 824 WG01_V8 1200 6 120 6 200 20 80	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Ci2 BCI3 Ar total flow	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180	26 POR 1000 125 6 120 20 40 180	bigher Bias B22 WG01_V6 1000 200 6 120 20 40 180	maintains etch angle lower bias B25 WG01_V9 700 50 6 120 20 40 180	higher blas and icp 824 WG01_V8 1200 6 120 6 120 20 80 220	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press CI2 BCI3 Ar total flow CI2/BCL3 ratio	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180 6	26 POR 1000 125 6 120 20 40 180 6	Higher Bias B22 WG01_V6 1000 6 120 20 40 180 6	maintains etch angle B25 WG01_V9 700 6 120 6 120 20 40 180 6	higher bias and icp B24 WGO1_V8 1200 200 6 120 20 80 220 6	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Cl2 BCl3 Ar total flow Cl2/BCL3 ratio etch angle	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180 6 6	26 POR 1000 125 6 120 20 40 180 6 50.4	Higher Bias B22 WG01_V6 1000 200 6 120 20 40 180 6 57	maintains etch angle B25 WG01_V9 700 50 6 120 20 40 180 6 6 56	higher bias and icp B24 WG01_V8 1200 6 120 20 80 220 6 59	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Ci2 BCi3 Ar total flow Ci2/BCI3 ratio etch angle etch time	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180 6 6 66 120	26 POR 1000 125 6 120 20 40 180 6 50.4 50	higher Blas B22 WG01_V6 1000 200 120 20 40 180 6 50	maintains etch angle lowerblas 825 WGO1_V9 700 6 120 6 120 40 180 6 5 6 5 5 0 100	higher bias and icp B24 WG01_V8 1200 6 120 20 80 220 6 59 50	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Cl2 BCl3 Ar total flow Cl2/BCL3 ratio etch angle etch time depth	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180 6 6 6 6 6 6 6 120 160	26 POR 1000 125 6 120 20 40 180 6 50.4 50 228	Higher Blas B22 WG01_V6 1000 200 6 120 20 40 180 6 57 50 350	maintains etch angle B25 WG01 V9 700 50 6 120 20 20 40 120 6 6 56 100 253	higher bias and icp B24 WGOL_V8 1200 6 120 20 80 220 6 59 50 338	resist only 7.4 0.44	resist only 8.4 0.34	resistaniy 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press CI2 BCI3 Ar total flow CI2/BCI3 ratio etch angle etch time depth	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180 6 6 6 6 6 6 6 120 160	26 POR 1000 125 6 120 20 40 180 6 50.4 50 228	higher Blas B22 WG01_V6 1000 200 6 120 40 180 6 57 50 350	maintains etch angle B25 WGO1 V9 700 6 120 20 40 180 6 50 40 180 6 50 20 20 20 20 20 20 20 20 20 40 180 50 6 100 20 20 20 20 20 20 20 20 20 20 20 20 2	higher bias and icp B24 WG01_V8 1200 6 120 20 80 220 6 59 50 338	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						
Wafer ID Recipe variant ICP BIAS Press Cl2 BCl3 Ar total flow Cl2/BCL3 ratio etch angle etch time depth Etch rate	wafer 1,4 WG01 POR 1000 125 6 120 20 40 180 6 6 6 6 6 120 160 1.33	26 POR 1000 125 6 120 20 40 180 6 50.4 50 228 4.56	Higher Blas bigher Blas B22 WGO1_V6 10000 200 40 180 6 120 20 40 180 6 57 50 350 7.00	maintains etch angle lower bias 825 WGO1 V9 700 6 120 6 120 20 6 120 20 40 180 6 180 6 180 6 100 253 253 100 253 253 253 253 253 253 253 253	higher bias and icp 824 WG01_V8 1200 6 120 20 80 220 6 59 50 338 	resist only 7.4 0.44	resist only 8.4 0.34	resist only 4.8 1.02						

300 mm (12:3 11:0) Vouent faith (12:0) Vouen

SG 04/22/22

Northeastern University

SAMCO Etch Trials grouped by Variable

SAMCO Metal Etcher			higher BCI3 worse angle			lower pressure slightly better												
			reduced total flo	w better a	ngle			reduced A	r dilution			i	ncresed			Higher Pr	esssure worse angle	
		1st	shorter time					reduced B	ICI3			B	3cl3 worse	9				
	Wafer ID	33	35	34	36	38	41	44	45					42		41	42	
	Recipe variant	72 Samco	74 sam	73 sam	73 sam	74 sam	74	77	77				72	76		74	76	
	ICP	600	600	600	600	600	600	600	600				600	600		600	600	
	BIAS	200	200	200	200	200	200	200	200				200	200		200	200	
	Press	0.7 PA	0.7 PA	0.7 PA	0.7 PA	0.4	0.4	0.4	0.4				1.1	1.1		0.4	1.1	
	Cl2	90	90	65	30	14	40	20	20				20	40		40	40	
	BCI3	15	15	40	5	10	10	0	0				10	0		10	0	
	Ar	10	50	10	0	6	0	0	0				0	0		0	0	
	total flow	115	155	115	35	30	50	20	20				30	40		50	40	
	Cl2/BCL3 ratio	6	6	1.625	6	1.4	4						2			4		
	etch angle	58	52	47	64	53	64	53	60				30	48		64	48	
	etch time	90	50	50	50	50	50	50	50				50	50		50	50	
	depth	385+30	381+162	207	216	152	245	200	200				186	250		245	250	
	Etch rate	4.6	10.9	4.1	4.3	3.0	4.9	4.0	4.0				3.7	5.0		4.9	5.0	
	A 11 104 A A A A						<u> </u>						NCOV142	MCOV142	0		11/00/44.00	
	Oxide HM BT Recipe	WG0X14 50	WG0X1451	WG0X14 5	WG0X1438	WG0X143	8					V	/VGUX143	VVGUX14 5	8		WG0X1438	
	Oxide HM BT Recipe Oxide HM thickness	WG0X14 50 300	WG0X14 51 301	WG0X14 5 300	200 WG0X14	 WG0X143 200	8					V	200 200	200	8		WGUX1438	
	Oxide HM BT Recipe Oxide HM thickness AIN/RES	WG0X14 50 300	WG0X14 51 301	WG0X145 300	200 200	WG0X143 200	8					V	200	200	8		WG0X1438	
	Oxide HM BT Recipe Oxide HM thickness AIN/RES	WG0X14 50 300	WG0X1451 301	WG0X145 300	200 WG0X14 38	WG0X143 200	8						200	200	8	216.1 0	WGUX1438	
	Oxide HM BI Recipe Oxide HM thickness AIN/RES	WG0X14 50 300 <u>variables</u>	WG0X14 51 301 Best Condition	WG0X145 300	200	200	8						200	200	8	215.3 m	WGUX1438	
	Oxide HM BT Recipe Oxide HM thickness AIN/RES ICP	WG0X14 50 300 <u>variables</u> 600	WG0X14 51 301 <u>Best Condition</u> 600	WG0X145 300	200	WG0X14 3 200	8			68 99 m			200	200	8	215.3 m	WGUX1438	
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS	WG0X14 50 300 <u>variables</u> 600 200	WG0X14 51 301 Best Condition 600 200	WG0X145 300	200	WG0X143 200	8			ee sann			200	200	8	216.3 m		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1	WG0X14 51 301 Best Condition 600 200 0.4	WG0X14 5 300	200	200	8		107.C m	ee sam T			200	200	8	2163 m		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa CI2	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90	WG0X14 51 301 Best Condition 600 200 0.4 40	WG0X14 5 300	WG0X14 38 200	WG0X14 3 200	8		197 e roj	Le sorm			200	200	8	2153 m		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40	WG0X14 51 301 Best Condition 600 200 0.4 40 10	WG0X14 5 300 20 0	WG0X14 38 200	WG0X14 3 200	8		197 C m 223 C	és soran T	2 Crrr		200	200	8	2153 pr		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3 Ar	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15	WG0X14 51 301 <u>Best Condition</u> 600 200 0.4 40 10 0	WG0X14 5 300 20 0	WG0X14 38 200	1139 m	8	62.4	107.0 mm 203.0	ét sorra II Brm			200 fem	200	8	2153 m		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115	WG0X14 51 301 <u>Best Condition</u> 600 200 0.4 40 10 0 50	WG0X14 5 300 20 0	WG0X14 38 200	WG0X143 200	8	60.4	107 C MM	46 89 FF 2 6 Fm 59			210 5 mm	200	8	2103 07		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115	WG0X14 51 301 <u>Best Condition</u> 600 200 0.4 40 10 0 50	WG0X14 5 300 20 0 20	WG0X14 38 200	1339m	8		197 G nm 203 G	46 89 rn I 8 rn I 397			2005em	200	1	3153er T		
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115 angle	WG0X14 51 301 <u>Best Condition</u> 600 200 0.4 40 10 0 50 65 deg	WG0X14 5 300 20 0 20	WG0X14 38 200	US9m	8	-	197 C 007 233 C	<u>46 sern</u> <u>-</u> 6m			200 200 fm	200	8			
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115 angle	WG0X14 51 301 <u>Best Condition</u> 600 200 0.4 40 10 0 50 65 deg	WG0X14 5 300 20 0 20	WG0X14 38 200	1139m	8	60.5	197 e m. 283 d	6 an 1			200 200 fm	200	8			
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa Cl2 BCl3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115 angle	WG0X14 51 301 Best Condition 600 200 0.4 40 10 0 50 65 deg	WG0X14 5 300 20 0 20	WG0X14 38 200	1139m	8	60.5	197 g m 283 d	6 an 1			200 200 \$m	200	8			
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa CI2 BCI3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115 angle	WG0X14 51 301 Best Condition 600 200 0.4 40 10 0 50 65 deg	WG0X14 5 300 20 0 20	WG0X14 38 200	1139 m		Ed 4		46 89 mm 3 6 mm 2 2 2 2 2 2 2 2 2 2 2 2 2			200 205 m					
	Oxide HM BI Recipe Oxide HM thickness AIN/RES ICP BIAS Press pa CI2 BCI3 Ar total flow	WG0X14 50 300 <u>variables</u> 600 200 0.4, 0.7, 1.1 14,20,30,40,65,90 0,5,10,15,40 0,6,10,15 20, 30,35,40,50,115 angle	WG0X14 51 301 Best Condition 600 200 0.4 40 10 0 50 65 deg	WG0X14 5 300 20 0 20	WG0X14 38 200	133 m 100 nm mmr.		Ed.4		C BOYNT C BOYNT Branness			200 2005 mm					

SAMCO Etch Variants

LVX VERITAS VIRTVS

Group 1 ALNQT06 wafer 8 AIN Photonics SEM

\\Llfs\div8\GROUPS\G89\G89MEMBERSHARE\Programs\Quantum Interface\QT Fab Lots (ML)\ALNQT06\Fab Images _SEM and Optical

Group 1 ALNQT06 wafer 9 AIN Photonics SEM

\Llfs\div8\GROUPS\G89\G89MEMBERSHARE\Programs\Quantum Interface\QT Fab Lots (ML)\ALNQT06\Fab Images _SEM and Optical

Task 1. Aluminum Nitride Photonics ML Fabrication

- 1. Alignment mark pattern and Si etch and deposit bottom oxide
- 2. Sputter 400 nm Aluminum Nitride (external to ML) and deposit oxide hardmask
- 3. Pattern AIN WG layer, etch oxide HM, AIN

4. Remove excess oxide hardmask, and pattern and etch a deep facet to enable fiber coupling testing

Si substrate

PECVD SiO₂ AIN

Vertical grating coupler

Ring and Disk optical resonators have been fabricated

AIN Photonics and AO devices - 82 SG 04/22/22

2.

4.

5.

Task 2: AIN Optomechanical Resonators

Deposit bottom clad 1. oxide, dep polysilicon release layer, pattern

Sputter AIN and AI 3. electrode metal, pattern etch metal electrode.

etch.