

SiO₂ Dry Etching with Ru Hardmasks: Verticality and >100 Selectivity

Dr. Demis D. John

Process Scientist Manager

Dr. William Mitchell, Dr. Brian Thibeault, Thomas Reynolds, Dr. Ning Cao

Univ. of California Santa Barbara Nanofabrication Facility

> April 2022 NNCI Etch Symposium

U.C. Santa Barbara Nanofab

COVID shutdown: 2 week closure

- III-V's, quantum, superconducting, unusual materials
 - Photonics is strongest
- Remote Fabrication:
 - 6 staff on remote 'fab
 - Critical learning and process development
 - Process Qualification/SPC

2019

18

47

2020

20

40

2021

31

57

SiO₂ etching: current practices

- CHF₃, CF₄ are typical etchants, some O₂ to mitigate polymer
- Found that pure CHF₃ turns ~20nm circles into strange shapes due to polymer roughness

- Verticality is difficult without high selectivity
- High selectivity is difficult without high CHF₃
 - Can't achieve <20nm roughness and deep features</p>

SiO₂ etching: current practices

• CHF₃ (100%) polymer w/ photoresist

SiO₂ etching: current practices

- Chromium hard-mask
 - Good selectivity ≥30, works
 - EBeam Evap. has large ~50nm grains
 - Sputter has smaller ~10nm grains
- Cr dry etches in ICP of Cl₂/O₂ ≈ 70/30%
 - Strong loading effects
 - Nitrogen plasma discharge creates unetchable CrN
 - Occasionally wouldn't dry etch properly, leaving residues
 - Etches into underlying Si/SiO₂
 - Begins etching as soon as Cl₂ introduced

Cr grain size

Why Ruthenium?

- ALD Ru developed as MOSFET gate, highconductivity conformal seed layer for Cu plating etc.
- Installed as possible MOSFET gate for researchers
- Literature shows a simple O₂-based etch/strip with high-selectivity, thermally stable, hard material
- We hypothesized that the non-volatile fluorides might make a good F-based etch mask.
 - RuF₃ and RuF₄ are non-volatile (melt >500° C)
 - RuF₅, RuF₆, RuF₈ are volatile (melt <90° C)</p>

Ru etching

- Ru etches in O₂, very slowly
 - RuO₄ is gas at RT
- Addition of Cl₂ (5-10%) increases etch rate
 - For low-Cl₂ %, believe that Cl₂ increases O₂ radical density
- O₂-based etch provides very high selectivity to Si,SiO₂ underlayers
- Easy dry-chemical strip (insitu possible)

- Compare with Chromium
 - Requires 20-30% Cl₂
 - Etches via CrO_xCl_y formation
 - CrCl_x and CrO_x non-volatile with high melting point
 - Etches the underlying SiO₂/Si
 - Wet-removal not always possible

Ruthenium Hard Mask

- 100nm Sputtered Ru
 - Smoother than ALD!
- HSQ mask + EBL
- O₂=40 sccm, Cl₂=2 sccm,
 0.5 Pa, ICP/Bias=900/50 W
- Overetched by 25%
 - No SiO₂ etching at all.
- HSQ etches slowly in O₂
 - Un-annealed selectivity ~10
 - Primarily driven by ion bombardment (faceting)

Ru adhesion layer

- In some cases, Ru adhesion needed to be increased.
- We used ALD TiN ~5nm
 - Sputtered Ti adhesion would likely also work.
- For most work, we can omit the adhesion layer with no ill-effects.

engineering

Baseline SiO₂ Etch

- CF₄ flow = 60 sccm, total maintained
- Pressure = 5 mTorr,
- Bias power = 75 W
- ICP = 950 W (not varying)

Selectivity: ~55

250nm wide ridges, varying pitch/gap:

Δ **Pressure**, Δ **Bias**

• \uparrow Pressure: SiO₂ rate $\downarrow \downarrow$, Ru rate \uparrow • \uparrow Bias: SiO₂ rate \uparrow , Ru rate $\uparrow \uparrow$

C₄F₈ Etching

- $\uparrow\uparrow$ Selectivity, due to Ru rate $\downarrow\downarrow$ in first 5 sccm
- RuF₂₋₃ formation non-volatile fluoride

engineering

C₄F₈ Etching

- $\uparrow\uparrow$ Selectivity, due to Ru rate $\downarrow\downarrow\downarrow$ in first 5 sccm
- RuF₂₋₃ formation non-volatile fluoride

enaineerina

CHF₃ Etching

- CHF₃: Ru rate $\downarrow \downarrow$, Selectivity >> 200 for 100%
- RuF₂₋₃ formation hard, non-volatile fluoride
- Ru Delamination at CHF3 > 50sccm required TiN adhesion layer to prevent.

engineering

CHF₃ Etching

• CHF₃: Ru rate $\downarrow \downarrow$, Selectivity >> 200 for 100%

~75

> 100

> 250

SF₆ Results

- Ru rate ↑, SiO2 rate
- High Fluorine concentration, allows for formation of high-F compounds with low melting points
 - RuF5 86.5° C
 - RuF6 54°C

Transferred to I-Line PR's

- Low selectivity, Ru:PR ≈ 0.2
- Can use thinner Ru layers due to high SiO₂:Ru selectivity

Conclusions

- Ru-masked SiO₂ etching:
 - Patterned and removed with high-selectivity O₂ etch (+ 5% Cl₂)
 - Does not attack underlying Si or SiO2 layers
 - Easiest way to achieve highly vertical SiO₂/SiN etching.
 - Selectivity up to 250 (pure CHF₃)
 - Requires Ti-based adhesion layer.
- Further work: Osmium?
 - etches in O₂ alone, but leaves residue, rate is low.
 - Add F-based and ↑ rate.
 - Add Cl2, and ↓ rate
 - Opposite of Ru perhaps good for Cl2-based etching?
 - No papers on etching Osmium? One textbook from the 60's.
 - \$6k for Os sputter target.EtoRuotarget was ~\$3k.

engineering

Oxford Cobra GaN ALE

Surface roughness relatively constant down to
 ~44nm etch depth
 Etching top p-GaN layers

The convergence of research and innovation.

AFM Images (5 x 5 µm)

The convergence of research and innovation.

Raith Velion FIB

The convergence of research and innovation.

Raith Velion FIB

Unpatterned Membrane 50nm thick Si₃N₄

75nm nanopore FIB

1µm x 1µm area Shrinks to 38nm 1µm x 1µm area Closed off

III-V-on-Silicon Ridge laser facets

As cleaved before milling

After ion beam milling

UC SANTA BARBARA engineering

Remote 'Fab Services: demis@ucsb.edu

The convergence of research and innovation.