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Obijectives

* To facilitate access to the modeling and simulation capabilities and
expertise

* To promote and facilitate the development of new capabilities.

* To promote utilization of the computation resources.
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Short Course on Electronic Device Modeling

conduction band energy (ev)

SDMS: Semiconductor Device Modeling and
Simulation
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Electrical, Compurer and Energy Engineering Arizona State University, Tempe AZ
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Silvaco Modeling Tools on nanoHUB

Display Power Memory Optical CMOS Adv.
CMOS

1992

Athena and Atlas
Stanford based 2D
process and device sim.

1995

Clever

In-House 3D field
solver RC extraction

2005

Victory Products
In-House 2D and 3D
process and device sim.

2019

Victory Atomistic
Purdue-based quantum
transport solution
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Assignments are on NanoHUB — For Instructors

Basic Semiconductor Device Modeling with Tools on

nanoHUB

By Dragica Vasileska

Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ
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EEE434: Quantum
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* More advanced GUI
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What can we do with the
MOSCap tool?
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Solutions to these assignments
available for Instructors upon
request!
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Example assignment:

Homework 3 — MOSFET Modeling

Objective

The objective of this set of problems is to understand MOSFET operation with
gate lengths ranging from couple of micrometers to tens of nanometers. Standard
description of the MOSFET device operation 1s presented first. We briefly discuss:

¢ Gradual channel approximation (square law and bulk charge theory) for long

channel devices, and

e Velocity saturation meodel, valid for nanoscale devices in which, due to the

large electric fields, there is degradation of the electron‘hole mobility.
The problems assignments address non-idealities of these models, which are called short-
channel effects, such as threshold voltage roll-off. velocity saturation and the Drain
Induced Barrier Lowering (DIBL) effect. This set of problems uses the MOSFET Lab
that can be accessed via ABACUS toolkit: (https://nanchub.org/resources/abacus ).

Theoretical Background

MOSFET 1z the most common field effect transistor in use today. The gafe
electrode 1s biased to produce an electric field that controls the conductivity of a
"channel" between two terminals, called the sowrce and drain. Depending on the type of
carriers in the channel. the device may be an n-chamne! (for electrons) or a p-channel (for
holes) MOSFET. The configuration, symbol and transfer characteristics for n-channel

and p-channel enhancement (normally off) or depletion mode (normally on) devices are
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Figure 1. Cross-sectional diagrams, circuit symbols, and transfer charactenstics of the four basic
MOSFET configurations.
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Immersive Virtual Worlds for

Experiential Learning of Microelectronics
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Collaborative NSF Award

Program: Improving Undergraduate STEM Education (IUSE), Level 3

Title: Interactive Visualizations and Simulations for Conceptual
Understanding in Quantum and Semiconductor Physics

Cir %57 PURDUE
Arizona State Goals:
University ) 1) Enhance and Expand the educational tools for experiential learning of the
% w semiconductor physics and devices.
‘ 2) Conduct large-scale evaluations of the tools with more than 350 students

across 5 universities with very diverse populations.

3) Answer two major research Questions: To what extent can such tools
change students’ conceptions? and 2) How does the design of such tools
affect students’ conceptions?
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Phase-Field Modeling of Domain Formation in FeFETs

o Phase-field model developed in COMSOL.
o Coupled solution of 2-D Poisson’s equation & Landau energy state
« Captures multi-domain texture in the ferroelectric layer.

» Impact of ferroelectric domain dynamics on the device’s
electrostatics and transport including substantial changes in
gate and source to drain tunneling S 04

~

w 0.2

» Device design guidelines derived for optimizing performance
(ON/OFF ratio, switching speed, etc.) -
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Phase-field Modeling of Multi-Domain Magnetic Tunnel Junctions

X
. . . . . . Pinned (Fixed) Layer (PL) *
o Analytical model of magnetic tunnel junction derived by solving y[ ;

electrostatic Green’s function t

o Multi-domain impact on tunnel magnetic resistance (TMR) and
switching speed analyzed.

o Basics of a compact model for circuit-level simulation derived.

o Phase-field models are being used to study and explain the
experimental results in superconducting and 2-d FETs Free Layer (FL)

Symobls: l:;hase - field slimulations
Solid Lines: Analytical Model
[1] N. Pandey, Y. S. Chauhan, L. F. Register, and S. K. Banerjee, “2-D Analytical Modeling of the
Magnetic Tunnel Junctions Including Multi-Domain Effects: Predictive Insights and Design .
Optimization,” IEEE Transactions on Electron Devices, May 2024, §4o
e
[2] N. Pandey, Y. S. Chauhan, L. F. Register, and S. K. Banerjee, “Impact of Multi-Domain S
Microscopic Interactions on Magnetic Tunnel Junction’s Static and Transient Characteristics,” 82nd =
Device Research Conference (DRC), Washington DC, USA, June 2024. 20§ tmgo =1nm |
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SiGeSn Material System (muATOMS EFRC)

Short-Range Order:
Another Degree of Freedom for Material Design
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Wide bandgap devices: Modeling of 4H SiC VDMOS

3D Full-band MC device simulator
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Modeling of Hot Carriers Solar Cells (S. M. Goodnick / D. Vasileska)

Fit to generalized Plank’s law
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3nm Nanosheet GAA-FET Process Design Kit

Standard Cell Library Design and
Characterization (~ 60 cells)

ccccccccc

High-K gate oxide
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Interconnect and Transistor

TCAD and Process Simulations BEOL Definition and
Characterization

Place and Route
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Collaboration with Synopsys: Process Emulations
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Collaboration with Drs. Victor Moroz, Alexei
Svizhenko, and Joanne Huang from Synopsys
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3nm Nanosheet GAA-FET PDK Development
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Process-aware cell library
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DTCO: TCAD to Full Chip

Standard Cell Library Design and
Characterization (~ 60 cells)

Process Aware TCAD Simulations
BEOL Definition and

Characterization

Place and Route
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* Short Course on Electronic Device Modeling

* Immersive Virtual Worlds for Experiential Learning of
Microelectronics

* Physical modeling for FeFETs, MT]s, SiGeSn material systems, SiC
VDMOS, and Hot Carrier Solar Cells.

* Open Source PDK for the 3nm nanosheet CMOS Technology
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