

Exploring Polyvinyl Alcohol (PVA) as an Electrospinning Material

Lucas Lanford, Estrella Mountain Community College Dr. Dilan Ratnayake, University of Louisville Dr. Kevin Walsh, University of Louisville

What is Electrospinning?

- An advanced manufacturing process that uses high voltage to draw thin polymer jets into solid fibers
- Produces nanoscale fibers with high surface area and tunable properties
- Fibers are collected on a grounded surface after solvent evaporation
- Allows control over fiber diameter, alignment, and porosity

Electrospinning Setup

UofL Electrospinning Setup

Inovenso NE300 Electrospinning System

Why it Matters

Electrospinning Advantages

- Electrospun fibers have a high surface area
- Mimic structures found in biological tissue like collagen
- Can be engineered for things like biosensors, flexible electronics, and smart fabrics

Electrospun PVA nanofibers at 1000x magnification

Project Overview

- Investigate how working distance and molecular weight affects polyvinyl alcohol (PVA) fiber formation
- Four distances: 30 mm, 80 mm, 130 mm, and 180 mm
- For each, adjust voltage and flow rate to identify optimal conditions
- Use SEM to analyze how distance influences fiber quality, diameter, and porosity
- Electrospinning was conducted under ambient humidity, which ranged from 62-67%

Electrospinning PVA dissolved in water

PVA Spinning Solution

- Polyvinyl alcohol (PVA) is water-soluble,
 biocompatible, and widely used
- We used one PVA with a molecular weight of 13,000–23,000 Da (25 wt%) and another at 105,600 Da (4.545 wt%)
- Both were dissolved in Reverse Osmosis (RO) water
- Goal is to develop a <u>safe</u>, <u>reproducible baseline</u>
 process for PVA electrospinning

Mixing PVA powder with water

Optimization Approach

- At each distance, voltage and flow rate are systematically varied for each solution
- Criteria for optimization are a stable Taylor cone, minimal bead formation, and uniform fiber deposition
- "Best recipe" for each distance was chosen for SEM analysis

Sample Collection and SEM Prep

- Collected on aluminum foil over grounded plate
- Used carbon tape to secure aluminum foil to the SEM stubs
- Samples sputter-coated with gold palladium (14.7 nm thick)
- Imaged at 10,000x magnification using SEM

Samples prepared for SEM inspection

SEM Analysis

- Collect samples from each optimal condition
- Used SEM to evaluate fiber diameter and uniformity, surface coverage (fiber density), and presence of defects or beads
- ImageJ software was used for quantitative fiber analysis

13-23 kDa PVA solution under the SEM (1500x)

SEM Comparison

180mm distance 80mm distance 30mm distance 130mm distance 13-23 kDa **PVA Solution** Did not create 105.6 kDa nanofibers **PVA Solution**

Quantitative Results

						Ш				
Input Parameters						П	Re	sults		
13,000-23,000 Da					Solution					
Working Distance (mm)	Voltage (kV)	Flow (mL/hr)	%Humidity	Temp (C)	Mean Diameter (nm)		SD (nm)	Min (nm)	Max (nm)	%Porosity
30	13	0.25	62	22.7	96.269		13.845	74.55	139.748	12.5
80	31	0.3	64	22.5	108.794	П	26.28	66.097	171.435	14.11
130	27.5	0.25	64	22.3	112.916	П	24.878	77.087	196.374	11.99
180	37	0.4	63	22.8	105.221	П	21.579	70.107	155.932	27.69
105,600 Da So <mark>ution</mark>										
Working Distance (mm)	Voltage (kV)	Flow (mL/hr)	%Humidity	Temp (C)	Mean Diameter (nm)		SD (nm)	Min (nm)	Max (nm)	%Porosity
30	8.8	3.28	67	22.7	N/a		N/a	N/a	N/a	N/a
80	18	1.85	67	22.7	301.409		141.987	105.482	829.465	25.93
130	26	1.8	66	23	274.945		111.983	110.547	638.776	27.61
180	34	2.38	66	23	306.834		199.914	170.692	1286.615	23.57
									·	

Observations and Discussion

- Taylor cone looked the most consistent at
 80mm and 130mm working distance
- Low MW produced <u>much smaller fibers</u>
- Working distance influences field strength and flight time, but didn't influence fiber diameter as much as expected
- Higher MW fibers appeared <u>more porous</u>, which is potentially useful for filtration or tissue scaffolds

80mm working distance (both under 10,000x magnification)

High MW solution

Conclusion and Future Work

- Electrospinning parameters affect fiber formation and stability
- Both molecular weights produced quality fibers under tuned conditions
- Working distance influenced jet behavior more than final diameter
- Controlling humidity might affect reproducibility and fiber uniformity
- Future work would be mechanical testing and alternate solution formulations

Personal Reflection and Broader Impact

Working on the Inovenso NE300 system

- Gained hands-on experience with electrospinning and SEM imaging
- Improved experimental design, data analysis, and problemsolving skills
- Learned how polymer properties affect fiber structure and process outcomes
- Built confidence working independently with advanced research equipment

Acknowledgements

- Dr. Dilan Ratnayake
- Dr. Kevin Walsh
- Ana Sanchez Galiano
- Micro/Nano Technology Center Staff, University of Louisville

References

[1] Jiang, S., Schmalz, H., Agarwal, S., & Greiner, A. (2020). Electrospinning of ABS nanofibers and their high filtration performance. *Advanced Fiber Materials*, *2*(1), 34–43. https://doi.org/10.1007/s42765-019-00026-7

[2] Nguyen, J., Stwodah, R. M., Vasey, C. L., Rabatin, B. E., Atherton, B., D'Angelo, P. A., Swana, K. W., & Tang, C. (2020). Thermochromic fibers via electrospinning. *Polymers*, 12(4), 842. https://doi.org/10.3390/polym12040842

[3] Inovenso. (n.d.). Our technology. https://www.inovenso.com/ourtechnology/

