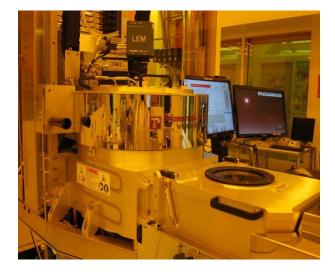
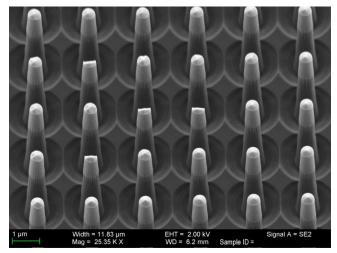
Etching Facility and Capability at Center for Nanoscale System Harvard University

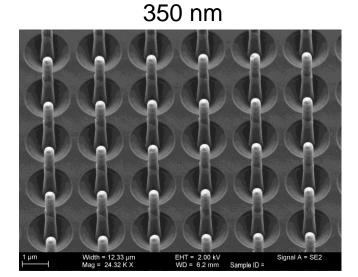
Dr. Ling Xie

Dry Etching Systems


- 1. Plasma Thermal Versaline
- 2. SPTS Rapier DRIE
- 3. STS Lpx ICP RIE
- 4. Unaxis Shuttline ICP RIE
- 5. Nexx ECR RIE
- 6. SouthBay RIE
- 7. XeF₂ Etcher
- 8. Technics and Anatech Strippers
- 9. Matrix Plasma Asher

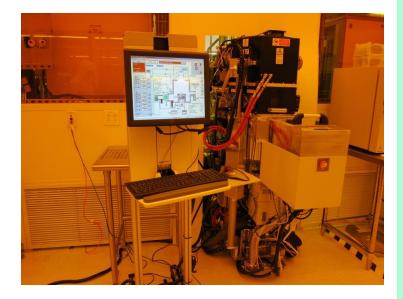
Plasma-Thermal Versaline


- ICP power 1.2 kW
- Substrate RF power 600 W
- Chuck temperature 10°C 180°C
- Primary gases: BCl₃, Cl₂, HBr, CH₄, O₂, Ar
- Single wafer loadlock up to 4" wafer



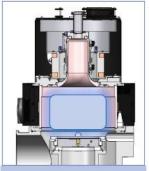
Diamond Pillars Etch

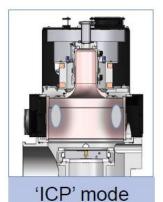
460 nm



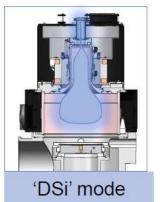
NNCI RIE Workshop, May 2016

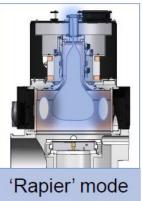
SPTS Rapier DRIE


- Primary source power 5.0 kW
- Secondary source power 5.0 kW
- Pulsed HF substrate power 300 W
- ESC chuck, temperature range 20°C +40°C
- Primary gases: C₄F₈, SF₆, O₂, Ar, N₂
- Secondary gases: C₄F₈, SF₆, O₂
- Single wafer loadlock up to 6" wafer



Center for Nanoscale Systems


SPTS Rapier Operation Modes

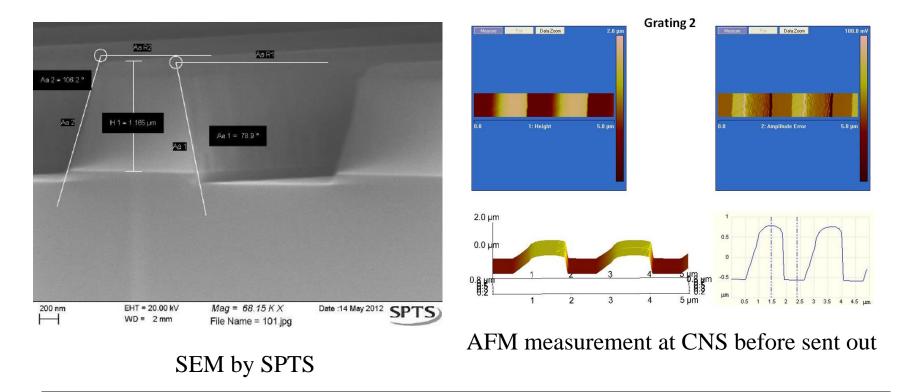

'RIE' mode

Original technology

Std decoupled source Newer technology N

rce Dual source y Newest technology

- Dual RF sources
- Dual gas inlets
- Multiple operating modes
- Average ICP power of 3.5kW
- Maintenance intervals
 - >6000 rf hours for cavity etches
 - >1000 rf hours for mixed processes
 - Wet clean recovery 6 8 hours


Pre Etch Mask for Grating Wafers

• Mask material:

thermal oxide

1.0 µm

- Thickness:
- Bottom opening width: $0.8 0.9 \ \mu m$

NNCI RIE Workshop, May 2016

7

Center for Nanoscale Systems

Harvard University

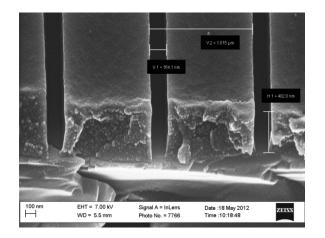
Grating

 $2 \ \mu m$ in pitches, 50 μm in depth $1.0 \ \mu m$ SiO₂ etching mask

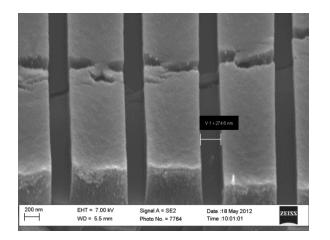
		H2=4.238 µm	Η 1 = 47 00 μπ
10 µm	EHT = 7.00 kV	Signal A = InLens	Date :2 Jul 2012
	WD = 5.3 mm	Photo No. = 8133	Time :13:08:09

Characteristic	Achieved
Etch profile angle	90±0.1°
Scallop depth	38nm @ top
CD Loss (nm)	30nm
Mask Undercut (nm)	0
Selectivity to thermal oxide	53:1
Etch rate	1.27
Uniformity	1.3%
Depth (µm)	47 μm

8



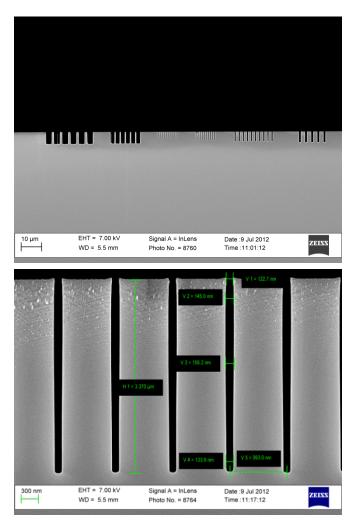
Center for


Nanoscale

Nano Features - Pre Etch Mask

ZEP450A

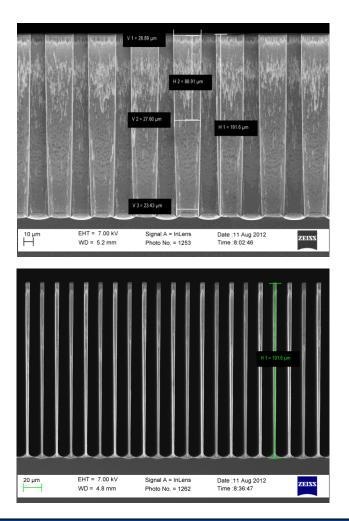
These are images of the e-beam resist etch mask of 100nm trenches. The top width is 144nm, 44nm off the design value, but became narrower at the bottom as shown on the cross section image.


The top width for 200nm trenches is 223nm.

NNCI RIE Workshop, May 2016

Nano Features

Characteristic	Achieved
Etch Profile	89.85
Scallop Depth	< 6 nm
CD Loss (nm)	6 nm
Mask Undercut (nm)	0
Selectivity to e-beam resist	9:1
Etch Rate	1.1 um/min
Uniformity	4.3%
Etch Depth (µm)	3.4



10

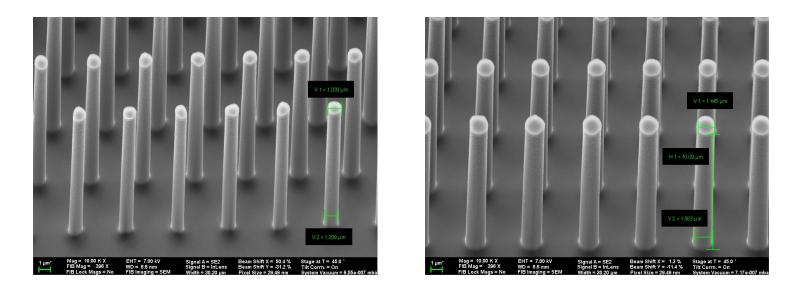
Center for

Micro Fins

Characteristic	Achieved
Etch Profile	90.7° long side 90.3° short side
Scallop Depth	< 100 nm
CD Loss (nm)	N/A
Mask Undercut (nm)	0 long side 0 short side
Selectivity to photo resist	52:1
Etch Rate	4.4 um/min
Uniformity ¹	4.4%
Etch Depth (µm)	191µm

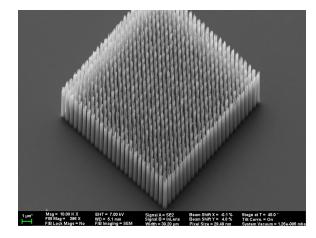
NNCI RIE Workshop, May 2016

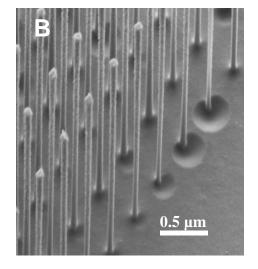
STS Lpx ICP RIE


- ICP assembly upper electrode
 1500W
- rf biased lower electrode, chilled to 15 30°C, 300 W
- Available gases: C₄F₈, SF₆, CF₄, CHF₃, Cl₂, HBr, BCl₃, H₂, Ar

•Single wafer loadlock up to 6" wafer

Si Pillar Etch with none-Bosch Process

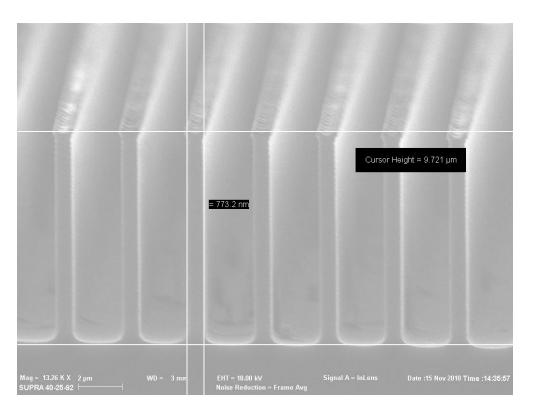

 C_4F_8/SF_6 etching gases, AI etching mask Pillars: 1.0 - 1.5 µm in diameter, 10 µm in etch depth



NNCI RIE Workshop, May 2016

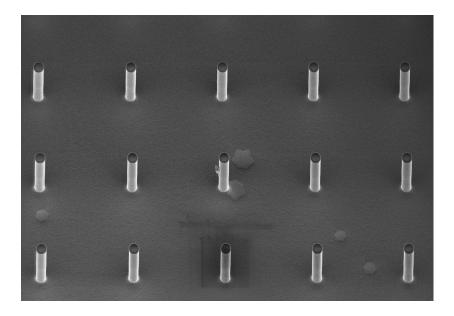
Si Nanowire Etch with STS ICP

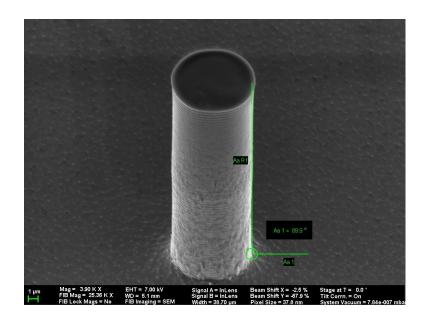
Reactive ion etch to obtain NWs length 300nm in diameter and 5 microns in depth Si NW arrays


FESEM image of Si NW by RIE The rough surface was possibly the fluoropolymer layer formed during etch.

NNCI RIE Workshop, May 2016

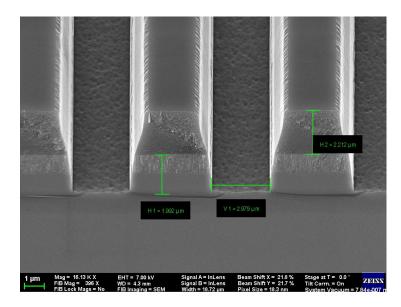
Si Ridge Etch with Bosch Process


Ridges with 770 nm in width, 2 μ m in space, and 10 μ m in etch depth



Si Pillar Etch with Bosch Process

16


 C_4F_8/SF_6 etching gases, resist etching mask Pillars: 8.0 µm in diameter, 50 µm in etch depth

Center for Nanoscale Systems Harvard University

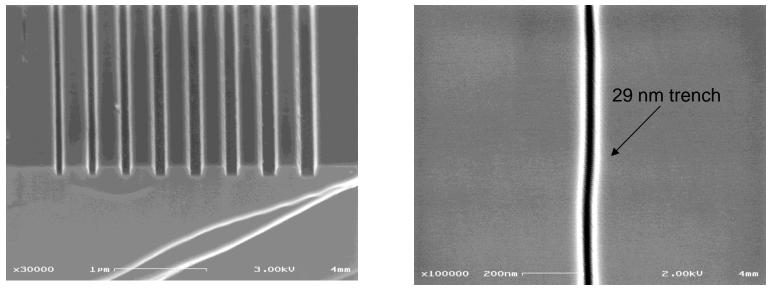
SiN_x/SiO₂ Etching with STS ICP

- Gases:
- C₄F₈, SF₆, H₂

- Etch depth: 2.0 µm deep
- Mask: Photoresist
- Etch Rate: 0.5 µm /min
- Selectivity: 1.5:1
- **Profile:** 82°
- Uniformity: +/- 1.4%

Unaxis ShuttlineTM System

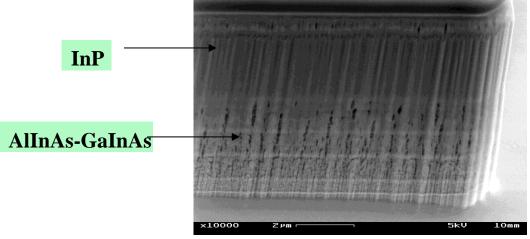
Specification:


- Inductively Coupled Plasma Etching (ICP)
- 2.5 kW ICP source power supply @ 2 MHz
- RF generator up to 300W @ 13.56 MHz
- Substrate clamping with backside helium thermal control
- Substrate heating system up to 180°C
- Available gases: HBr, Cl₂, BCl₃, CH₄, H₂, Ar, N₂, O₂
- Laser endpoint detector
- Loadlock equipped
- Computer control

GaAs Nanotrenches with Unaxis

Chemistry:	BCl3, Ar, N2
Mask:	PMMA
Selectivity:	1.22
Etch rate:	0.5 um/min

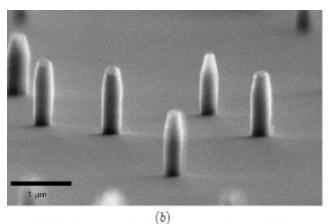
This process was used to etch nano-trenches and -holes and resulted in clean & smooth etch surface, good selectivity to PMMA, and 85 degree side wall.

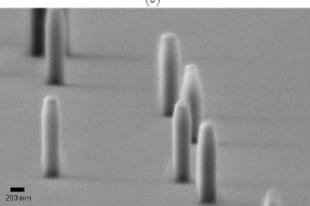


NNCI RIE Workshop, May 2016

InP/(AlInAs-GaInAs multi-layers)/InP

Chemistry:	HBr, N2
Mask:	SU-8
Selectivity:	> 10:1
Etch rate:	~ 2.0 um/min
	and the second

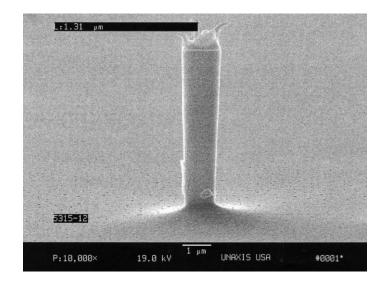

This process resulted in uniform etching along the depth for different materials. For multi-layerdifferent materials etching, the big challenge is the jags or roughness along the sidewall caused by selective etching or varying lateral etch rates of different materials. This process overcomes this problem and also demonstrated clean & smooth etch surface.



NNCI RIE Workshop, May 2016

Diamond Etch

Birgit J. M. Hausmann, etc. School of Engineering and Applied Sciences, Harvard University, McKay Lab 219, 9 Oxford Street



21

Center for

GaN Etch with Unaxis ICP

Provided by Dr. Y. Lee, etc, from Unaxis

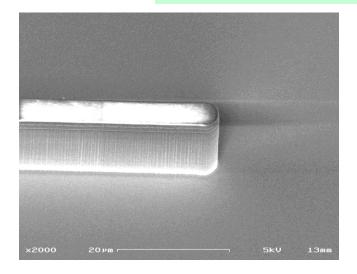
Chemistry: BCl₃, N₂, and Ar

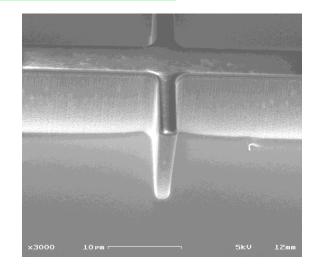
Characteristics: Vertical wall, smooth sidewall and floor surfaces

Etch Rate: 0.5 µm/min

Selectivity: 40:1 to Ni

22


Center for Nanoscale


Svstems

Harvard University

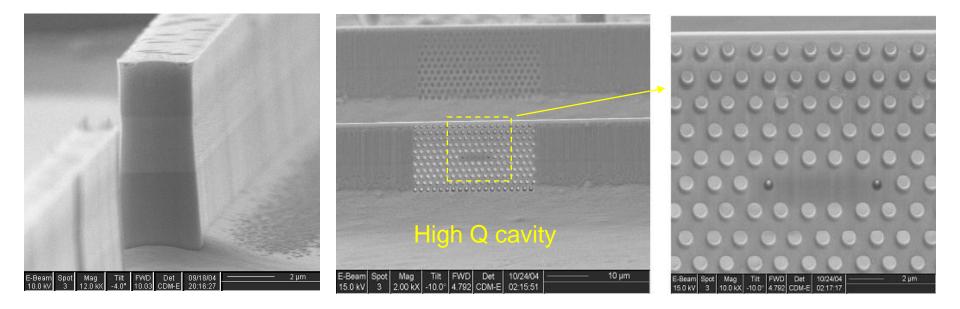
InP Etch with Unaxis

Chemistry:	HBr, N2
Mask:	SU8
Selectivity:	> 10:1
Etch rate:	~ 2.0 um/min

Clean & smooth etch surface, 10 – 15 um deep etch, vertical side wall, greater than 10:1 selectivity to Si3N4 or SU-8

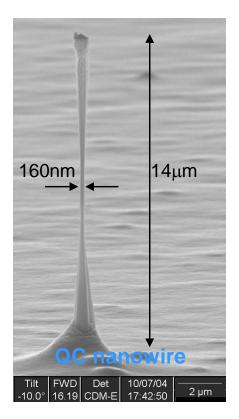
Nexx Systems Cirrus 150

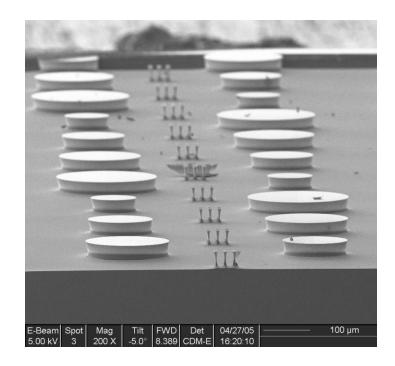
5/20/2016


Specifications:

- Electron Cyclotron Resonance Reactive Ion Etch
- ASTeX 1500 W microwave power supply
- RFPP 13.56 MHz 500 W RF generator
- Stainless reactor, 12.75 in O.D, process up to 6" wafers
- Balzers turbo pump
- Substrate clamping with backside helium cooling
- Available gases: Cl₂, CF₄, CHF₃, CH₄, H₂, Ar, O₂, and He
- Loadlock equipped
- Computer control

Deep InP Etch with Nexx ECR


Chemistry : Cl_2 and H_2 ; Etch rate: 1 μ m/min Provided by Dr. M. Loncar in Prof. F. Capasso's group



25 Center for Nanoscale Systems Harvard University

NNCI RIE Workshop, May 2016

Deep InP Etch with Nexx ECR

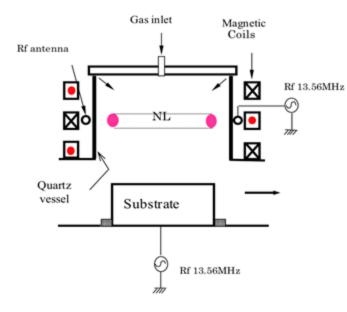
Nanowire and disk laser Provided by Dr. M. Loncar in Prof. F. Capasso's group

NNCI RIE Workshop, May 2016

SouthBay RIE 2000

Specification:

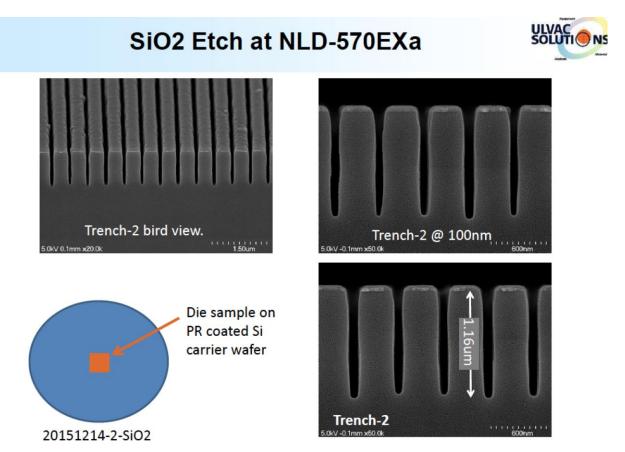
- Standard parallel-plate rf plasma
- 13.56 MHz RF power up to 200 W
- 8" chamber diameter
- Water cooled sample stage
- Sample size up to 6"
- Turbo pump to10⁻⁶ Torr base pressure
- Available gases: SF₆, CHF₃, CF₄, Ar, O₂
- Manual controls


Upcoming System

- ULVAC Deep Oxide Etcher
- Intlvac IBE System

Deep Oxide Etcher – Ulvac -570

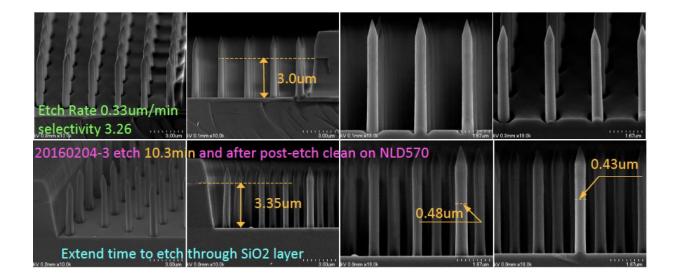
- NLD (Neutral Loop Discharge) plasma is generated by charging an electric field at Neutral magnetic points.
- The plasma can be controlled spatially by adjusting the electromagnetic coil current.
- Achieves ideal anisotropic structural profile by generating low pressure and high density plasma.



29

Center for

ULVAC High Aspect Ration Oxide Etch



NNCI RIE Workshop, May 2016

ULVAC Pillar Oxide etch results

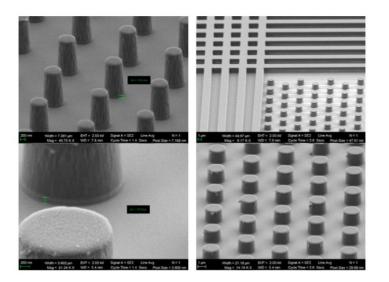
NNCI RIE Workshop, May 2016

31

Center for Nanoscale

Systems

Harvard University


IBE : Intlvac SiO2

Wafer 6-6

6" fused silica. Performed on October 15, 2015.

Note: Normal to beam is 90° and parallel is 0°

Etch Angle	Time (min)	Total Removed	148	nm
85°	40	Etch Rate	3.7	nm/min
Beam Parameters	200V, 70mA			
Process Pressure	3.3×10 ⁻⁴ Torr			

