

Optical Characterization of Epitaxially Integrated High-Contrast Photonic Structures

Thomas Leonard Mentor: Dan Ironside PI: Seth Bank

Motivation

• High-contrast grating:

n _{high} n _{low}	n _{high}	n _{low}	n _{high}
------------------------------------	-------------------	------------------	-------------------

- Structures utilizing low and high index dielectric materials
- Applications:
 - Broadband Reflective Mirrors/Transmitters/Absorbers
 - Optical Switching/Filters

Air gap

Active region

Material System

- Epitaxially integrated system grown via Molecular Beam Epitaxy
 - Patterned SiO₂ grating fabricated on GaAs wafers
 - Encapsulation and planarization of SiO₂ gratings via selective/regrowth processes

GaAs overgrowth 2	.4µm
1.4um	
	· · ·
SiO2 gratings	GaAs

SiO

Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy

Optical Test Structure

Excitation-dependent Photoluminescence

Excitation-dependent Photoluminescence

Excitation-dependent Photoluminescence

Temperature-dependent Photoluminescence

Temperature-dependent Photoluminescence

Interference fringes evident in FTIR evident in PL

Interference fringes evident in FTIR evident in PL

Summary

- Optical characterization of epitaxially encapsulated highcontrast gratings was performed with FTIR and PL
- Reflectivity was measured and confirmed with theory
- PL was comparable to control
 - Enhancement is partly due to changes in transmissivity

Acknowledgements

Mentor Dan Ironside PI Seth Bank LASE Group National Nanotechnology Coordinated Infrastructure Fellow REUs This work is based upon work supported primarily by the National Science Foundation under Cooperative Agreement No. ECCS-1542159 , who provided funding for this research.

1.4µm pitch,0.7µm bars

1.8µm pitch,0.9µm bars

1.6µm pitch,0.8µm bars

2.2µm pitch,1.1µm bars

Grating Fabrication PECVD

(50-200 nm) SiO₂

GaAs substrate

Grating Fabrication Sacrificial Layer

(10-50 nm) a-Si SiO ₂	
GaAs substrate	
(10-50nm) a-Si	

Grating Fabrication Spin-Coat Photoresist

Grating Fabrication UV Lithography

Grating Fabrication Dry Etch

Grating Fabrication Wash

GaAs Overgrowth

D

Е

Т

E C T

0

R

No Backscatter

No Reabsorption

D

Е

Т

Ε

С

Т

0

R

D

Е

Т

E C

Т

0

R

Interference fringes evident in FTIR evident in PL

Polycrystalline GaAs Formation

Why Dielectric Metastructures?

Lossless broadband reflection

Less material than DBR

77

97

117

137

157

177

197

217

237

257

277

D/C Ratio : EA+EB 1.8 1.6 1.4 1.2 ——1.4D **—**2.2D 1 **—**1.6D 0.8 ~ 1.8D 0.6 **→**2.2D 0.4 0.2 0 35

Excitation Dependent PL

Photoluminescence Edge Emission (EB)

Functionality of Dielectric Metastructures

Defect Density

Comparing Growth Methods

Orientation, Mid IR, w/o QW

_____D ____V ____H ____C

40

Excitation Dependent PL 1.2 Ratio Grating : Control 2 1 1.5 Ratio .0x Power 1 0.5 Intensity (a. u.) 0.3x Power 0 0.5 1.5 0 2 0.1x Power **Power Density** 0.2 0 870 920 970 820 1020 41 Wavelength (nm)

-1.4D2 -1.4D3 -1.4D4 -1.4D5 -1.4D6 -control

77K PL Emission for EA and EB

Motivation

• Single Crystal vs. Amorphous (QW)

Bibliography

- Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, "All-Dielectric One-Dimensional Periodic Structure for Total Omnidirectional Reflection and Partial Spontaneous Emission Control." Journal of Lightwave Technology, (17:11), 1999.
- Sang et al., Opt. Laser Technol. (2016) [2] Brückner et al., IEEE Photon. Tech. Lett. (2013) [3] Nishii et al., Appl. Optics (2004)
- Chase et al., Opt. Express (2010) [2] Sciancalepore et al., IEEE Photon. Tech. Lett. (2013)
- Yoo, Byung-Wook, et al. Optical Phased Array Using Single Crystalline Silicon High-Contrast-Gratings for Beamsteering. SPIE 8633. 2013.
- Connie J. Chang-Hasnain* and Weijian Yang, High-contrast gratings for integrated optoelectronics, Advances in Optics and Photonics 4, 379–440 (2012).