

Bioceramic-Based Biomaterial Products for Orthopedic Implants

Rebekah Priddy
Dr. Kunal Kate*, Faculty Mentor
Department of Mechanical Engineering
University of Louisville

Problem Statement

AFTER

- Titanium and stainless steel
 - –Not biodegradable
 - -High elastic modulus causes stress shielding
 - –Can damage bone during screw removal

Objective

To develop a suitable, biocompatible composite material with properties similar to those of bone to be used in the 3D printing of orthopedic implants.

Materials

• PLA

-Thermoplastic polyester, low cost, biocompatible, biodegradable, long degradation time

• HA

-Bioceramic, makes up 50% by volume of human bone, osteoconductive

In combination, PLA and HA form a biodegradable composite material that is inexpensive and promotes bone growth.

Methodology

Stiffness wrt. Vol %

Samples with 40-50 vol % HA experience least deformation under 500 N compressive load.

Stress vs Strain

Sample with 50 vol % HA show greatest ratio of stress to strain. At 25% strain, 50% volume HA sample has compressive strength of 2.34 MPa.

Young's Modulus

Samples with 30-50% volume HA have greatest elasticity. Elasticity of 50% volume HA sample is 8.2% of that of bone.

Relative Density wrt. Bone

Samples with 50 volume % HA have a relative density of ~92% wrt. human cadaver bone.

Comparison wrt. Bone

	Titanium	50% vol HA/PLA Composite
Relative Density (%)	250	92
Relative Young's Modulus at 25% strain (%)	550	8.2
Relative Compressive Strength at 25% strain (%)	851	8.2

Density of 50 volume % HA sample is closer to that of bone than Ti. Lower Young's modulus than that of Ti eliminates stress shielding. Lower compressive strength eliminates damage to surrounding bone.

Significance

- 50 volume % HA samples most similar to bone
- Use as small-defect filler in low-load applications
- Human infant, feline, and canine fixations

Infant

More cartilage

Adult

Less cartilage

Future Work

- Biopolyester material filler, such as polyhydroxyalkanoate (PHA), combined with PLA/HA composite for modification of material flexibility
- Formulation of a composite with higher HA content to improve mechanical strength and elasticity
- Design and fabrication of 3D printed orthopedic screw