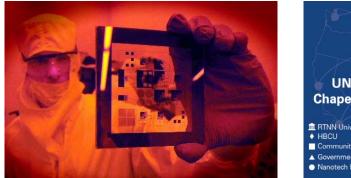
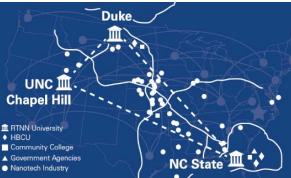


RTNN Executive Committee:

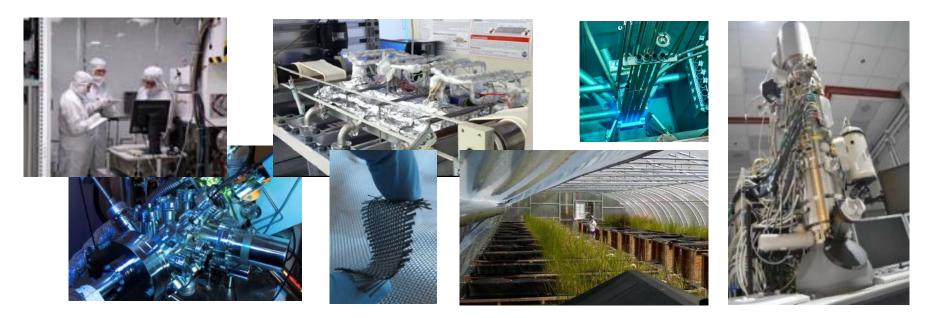
Jacob Jones (NC State), David Berube (NC State), Nan Jokerst (Duke), Mark Walters (Duke), Carrie Donley (UNC-Chapel Hill), & Jim Cahoon (UNC-Chapel Hill)





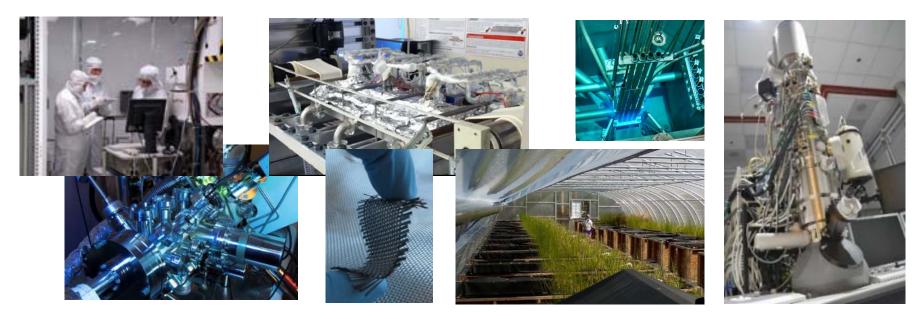
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The RTNN is an <u>Innovation Hub</u> that enables nanotech discovery, education, commercialization, and workforce development



Some Distinguishing Goals:

- Dramatically *enhance access* of external industry, government, and academic researchers to university core nanotechnology facilities by *lowering barriers to use* of facilities e.g. cost, distance, and awareness
- 2. Develop new nanotechnology *tools, education, outreach, and workforce training* programs for industry, government, academics, students, and K-12
- **3.** *Evaluate* the user base and the user program to institutionalize effective programs and drive change.


RTNN Core Facilities

By the numbers

Core Facilities: 9 core user facilities across 3 universities Tools: >200 characterization and fabrication tools across >40,000 ft.² of space Personnel: 45+ technical staff to assist/create/develop Principal Faculty: 100+ faculty working in related nanotechnology areas Use in Year 1: >1,100 users in year one; >52,000 annual hours of collective use Diversity: >50% facility use by non-traditional disciplines including Biology, Biomedical Engineering, Textile Engineering, Agriculture, Soil Science, Forest Biomaterials, Plant & Microbial Biology, ...>15% facility use by external users

RTNN Core Facilities

Nanofabrication

- **SMIF** (Director: Jokerst, 6 staff) comprehensive nanofabrication and characterization facility
- **NNF** (Director: Muth, 4 staff) nanofabrication facility
- CHANL (Director: Donley, 4 staff) nanofabrication and analytical facility
- Zeis and TexLabs (Director: Rust) textile processing shared facilities and education

Environmental

• **CEINT** (Director: Wiesner) - environmental mesocosms to evaluate the effects of nanomaterials on environment

Characterization

- **AIF** (Director: Jones, 7 staff) characterization facility for both hard and soft materials with *in situ* expertise
- **DMRSC** (Director: Spicer) Magnetic Resonance Spectroscopy Center
- **PULSTAR** (Director: Hawari, 12 staff) neutron imaging and diffraction, neutron activation, and positron beams

RTNN Reaches New Communities and Users

New engagement programs to address known barriers:

Cost, distance, awareness Free use for new, non-traditional users Nanotechnology MOOC (Coursera) Desktop scanning electron microscope Electron Microscopes in K-12 Classrooms K-12 tours and hands-on demos (e.g. NanoDays) REU+ activities, links undergrads to facilities Workshops for specific communities

Community college teachers Industry and business

Peer-to-peer student networks

Graduate student peer-to-peer staff

K-12 & Outreach:

> 1,800 people reached in first year

STEM clubs, summer camps, classrooms

> 50% from underrepresented groups Women in STEM, Minorities in STEM

Free-Use of Facilities Program

Goal

- Encourage facility use by new, nontraditional users
- Facilitate cutting-edge, transformative research

Provide funding for facility use and materials costs

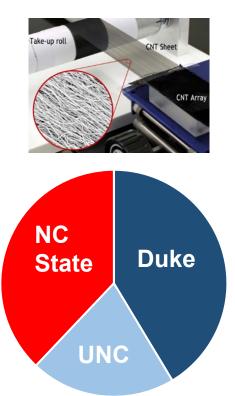
- Up to \$1,000 (at internal rate)
- Rolling applications

Types of projects

- Proof-of-principle studies
- Specialized characterization or fabrication not currently funded
- Individual or group class projects

Free-Use of Facilities Program

29 projects selected (~\$27k value of access)


Non-traditional users

- Start-up companies
- HBCU
- Non R1 universities
- High school students and classrooms

Positive feedback

- "Making these facilities accessible is critical for a small startup, where dollars are limited but enthusiastic users are not."
- "The results may be instrumental in forming key ideas in a future grant proposal."

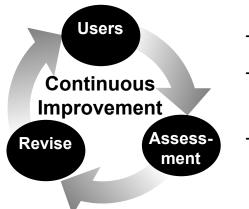
Massive Open Online Course (MOOC)

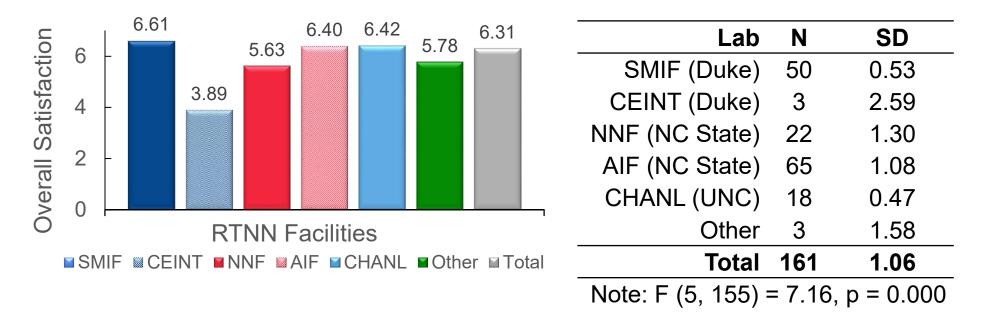
Nanotechnology: A Maker's Course

- Provide educational foundation in nano-fabrication and -characterization
- Easy to understand, scientific explanations
- In-lab demonstrations of state-of-theart equipment
- Demo video on next slide!

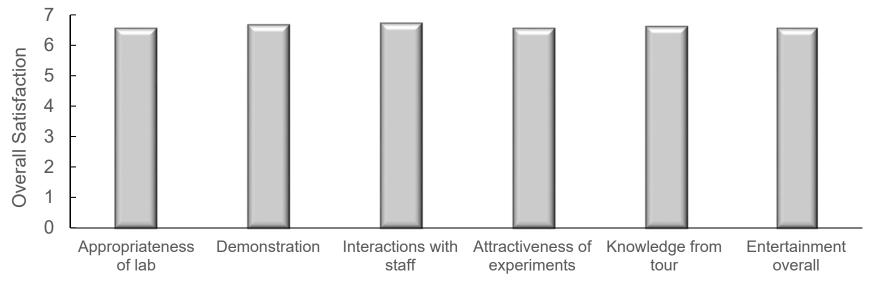
Community College Workshop

Provide nanotechnology teaching materials to community college educators Hands-on learning experiences




"...gave me exposure to nanotechnology and sophisticated equipment and materials that most community college educators never encounter."

Evaluation of the User Experience



- Evaluation of user programs will *drive change*
- Determine, e.g., the effectiveness of *free use program* at recruiting long-term (returning) users
- IRB approval at all three institutions so we can undertake research on our users; user interviews with the social science team

Satisfaction Level for Outreach/Engagement

Positive feedback

- "The crew at CHANL was great...They were able to connect to middle schoolers without using the complex chemistry and physics needed to understand what was really occurring in the demonstrations."
- "...overall we had a fantastic time. We connected with researchers and staff and the students were fully engaged."
 - "Thank you for truly making us feel a part of the experience..."

Communicating with the Public

Nanotechnology resources for the public

- Clearinghouse of crowd-sourced information on nanotechnology and nanoscience innovation, research, and education
- Public Alert Program to assist the media in reporting nanotechnology events by providing remarks from experts to help contextualize these events.
- Nanohype blog: contemporary topics in nanotechnology

Social media campaign

- Raising awareness through multiple distinct platforms
- Facebook, Twitter, LinkedIn
- In development: newsletter, Snapchat with geotags, Instagram

EXTRA SLIDES

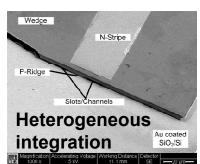
Research Triangle Nanotechnology Network

The RTNN is an Innovation Hub that enables nanotech discovery, education, commercialization, and workforce development

NC STATE UNIVERSITY

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Large Non-Traditional User Community

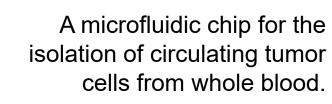

Designed intersection of traditional and non-traditional areas – fosters breakthroughs


Non-traditional user communities (>50% of users) Soft, wet, bio-based, flexible materials

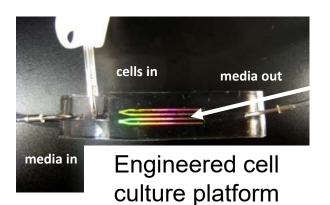
Forest Biomaterials Tissue Engineering Biomedical Nanoparticles Textiles Environmental Engineering (CEINT) Marine, Earth, and Atmospheric Sciences Food, Bioprocessing, and Nutrition Sciences

Traditional user communities

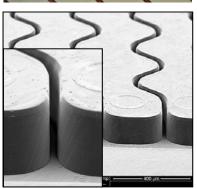
2D and 3D materials Semiconductors, esp. GaN-based Heterogeneous Integration Metamaterials Photonics, Photovoltaics Fluidics

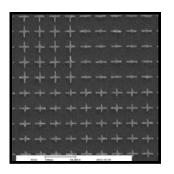


Controlling Arsenic uptake, storage,and release in Bangladesh rice fields


Arsenic hot spot

Interfaces, Metamaterials, Fluidics, and Heterogeneous Integration





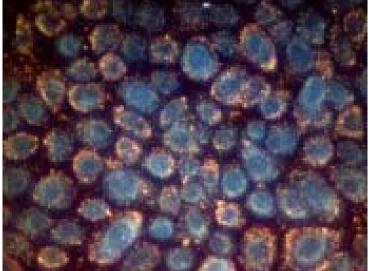
Entropic Trap

nput pillars

Solid Pillar

2

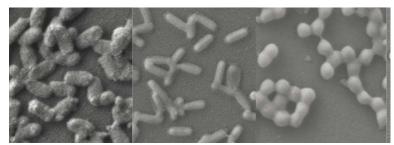
2D SOI nanostructured


metamaterial

3D stacked nanostructured metamaterial 50 nm x 50 nm nanochannel on a nanofluidic chip made via imprinting and used for transporting single DNA molecules.

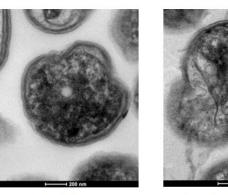
Nanochannel

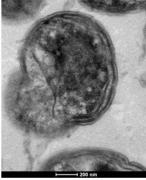
Nanomaterials for Biology and Environmental Assessment



Nanoshell photoassisted therapy for cancer treatment

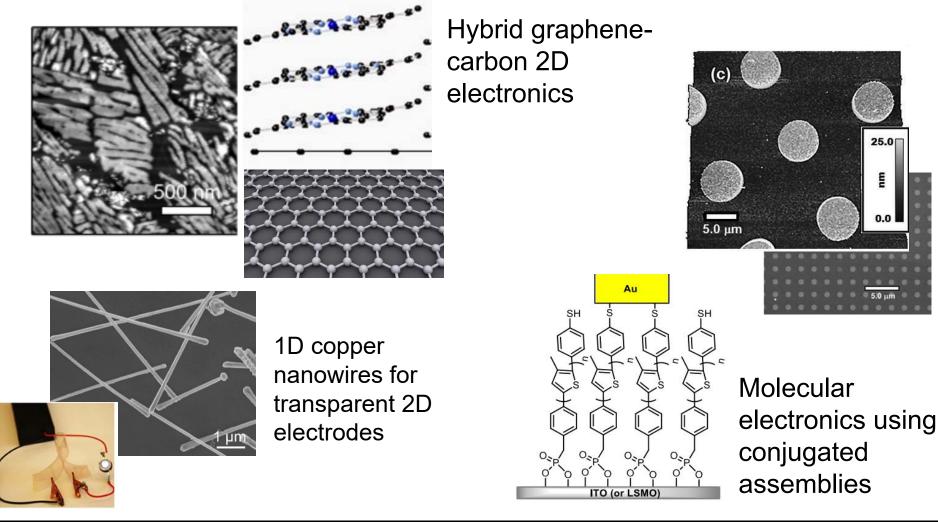
CEINT Mesocosm Boxes




CEINT will be made newly available to external users through the RTNN

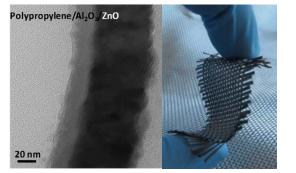
Nanoparticle drug delivery

Affect of Ag nanoparticles on Nitrosomanos europea

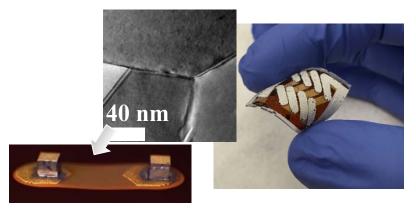


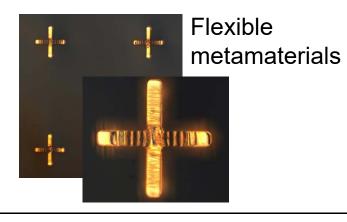
Control

2 ppm Citrate AgNP TEM Images of Nitrosomonas europaea


Organic and Inorganic 1- and 2-D Nanomaterials

Textile Nanosciences and Flexible Integrated Systems

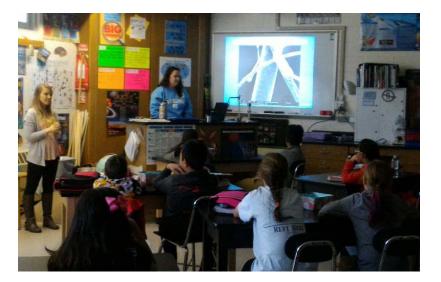

The Textiles industry in the U.S. employs 500,000 workers – significant opportunity for economic growth for the nation


Conductive textiles via atomic layer deposition (ALD)

Highthroughput ALD on textiles (roll-to-roll)

Thermoelectric nanocomposites energy harvester integrated into a polyimide/PDMS based package on a flexible substrate


Remote Access of Facilities


Classes collect samples and send to facility

- Interactive, student-led presentation
 - On-site or <u>remote</u>

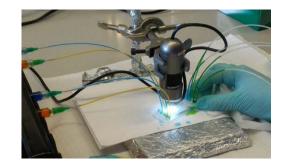
Desktop scanning electron microscope

- Take to classrooms
- Students drive microscope

Community College Workshop

Provide nanotechnology teaching materials to community college educators Hands-on learning experiences

"Gave me exposure to nanotechnology and sophisticated equipment and materials that most community college educators never encounter."


Technical Workshops and Short Courses

Specialized workshops

 Provide opportunities to discover new equipment and techniques

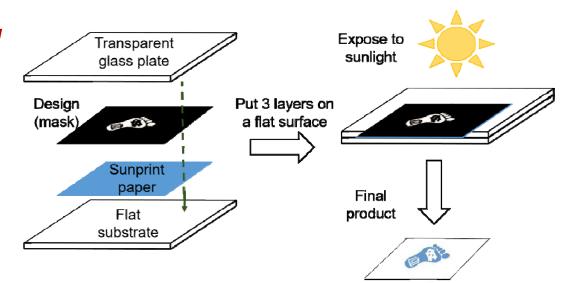
Short courses

- In-depth information on specific analysis or fabrication techniques available in facilities
- Hands-on component

Facility Tours and Demonstrations

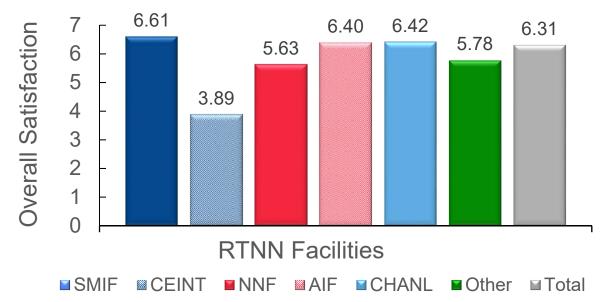
Equipment in action

Interactive events



Lesson Plan Development

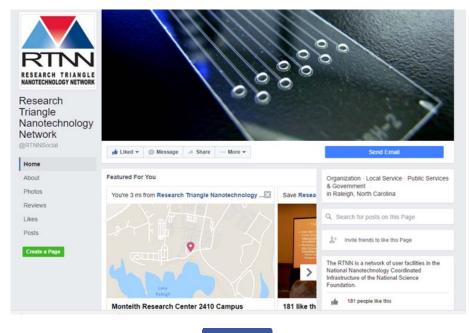
Incorporation of cutting edge science into the classroom


- Hit specific STEM educational standards
 - North Carolina
 - Next Generation
 Science Standards
- Focused for different grade levels
- Shared at SciREN teacher networking event


Satisfaction Level by RTNN Facility

Facility	Satisfaction	Ν	SD
SMIF (Duke)	6.61	50	0.53
CEINT (Duke)	3.89	3	2.59
NNF (NC State)	5.63	22	1.30
AIF (NC State)	6.40	65	1.08
CHANL (UNC)	6.42	18	0.47
Other	5.78	3	1.58
Total	6.31	161	1.06
Note: F (5, 155) = 7.16, p = 0.000			

Satisfaction Level for K-12 Outreach


Positive feedback

- "The crew at CHANL was great...They were able to connect to middle schoolers without using the complex chemistry and physics needed to understand what was really occurring in the demonstrations."
- "...overall we had a fantastic time. We connected with researchers and staff and the students were fully engaged."
 - "Thank you for truly making us feel a part of the experience..."

Social Media Campaign

Raising awareness through multiple, distinct platforms

Linked in

In development: newsletter, Snapchat with geotags, Instagram

