## **NNCI** Computation

Azad Naeemi Georgia Institute of Technology azad@gatech.edu





### **Objectives**

- To facilitate access to the modeling and simulation capabilities and expertise
- To identify the strategic areas for growth
- To promote and facilitate the development of the new capabilities.

An inventory of available modeling and simulation resources and expertise is being complied. The directory is hosted by nanoHub.org.

8 supercomputers or major computing clusters are available in various sites.

https://www.nnci.net/computation-resources



# Modeling and Simulation @ NCI-SW



Dragica Vasileska, ASU (NCI-SW)



# **Device Simulation**

#### Conventional MOSFET



### LDMOS: Lateral Double-Diffused MOSFET



#### VDMOS:Vertical Double-Diffused MOSFET



An in-house full-band Monte Carlo (FBEMC) device simulation tool is developed and validated.





Dragica Vasileska, ASU (NCI-SW)

# **Device and Process Simulation Course**

Developed ONLINE Graduate Level Semiconductor Device and Process Modeling Class (primarily focused on <u>Silvaco</u> device/process modeling).

27 students are currently taking the class at ASU from all over United States.





Dragica Vasileska, ASU (NCI-SW)

## Contributions to nanoHUB.org

### **Developed Bound States Calculation Lab:**

| ind States Calculation Lab                                                                                   | X Terminate 🕩 Keep for later |
|--------------------------------------------------------------------------------------------------------------|------------------------------|
| <b>put → @</b> Simulate                                                                                      | =                            |
| Confining Potential : Square Well<br>Effective mass<br>er of Energy Levels : Trangular Well<br>V-Shaped Well | 2                            |
| Well Wit                                                                                                     | dth (in nm) : 10             |
| Well Dep                                                                                                     | oth (in eV) : 0.5            |
| se yes if you want to have default mesh spacing, els                                                         | se choose no: 🔍 🗐 🖿 yes      |
|                                                                                                              | ing (in nm) : 0.1            |

| Table 1: Overview                  |                                                        |
|------------------------------------|--------------------------------------------------------|
| Item                               | Value                                                  |
| Contributions:                     | 378                                                    |
| Rank by Contributions:             | 3 / 2375                                               |
| First Contribution:                | 09 Mar 2005                                            |
| Last Contribution:                 | 19 Mar 2020                                            |
| <b>Citations on Contributions:</b> | 181                                                    |
| Usage in Courses/Classrooms:       | 7,516 users served in 480 courses from 47 institutions |

235 users/6 months (*since April 2020*)



X Terminate









# **CNF** Computing Capabilities

Resources available remotely during COVID-19

- Nanoscale simulation computing cluster
  Runs Scientific Linux 7 w OpenHPC & Slurm; Bring Your Own License!
- Pseudopotential Virtual Vault
  Online web database of over 1100 pseudopotential or Projected
  Augment Wave Method (PAW) files
- Remote access to software tools via "CNF Thin" Hotdesking service CAD (BEAMER, L-Edit, Java GDS, AutoDesk); Simulation (Coventor, Cadence, PROLITH, Layout LAB, TRACER); Image/Data Analysis (ProSEM, NanoScope Analysis, WinFLX)
- Virtual CAD Room
  Remote access to a virtual CNF CAD Rm Windows desktop w CNF SW
- AWS Conversion Cloud Large memory or CPU or long running CAD conversion jobs





# 2D Materials Database on MNIC Website



Includes more than 45 2D n



| WSe2                          |                                                                                   |                                                                                              |  |
|-------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Property                      | Description/Value                                                                 |                                                                                              |  |
|                               | Bulk                                                                              | Monolayer                                                                                    |  |
| Lattice constant (a)          | 3.28 Å [1]                                                                        | 3.32 Å [2]                                                                                   |  |
| Molar mass                    | 341.76 g/mol [3, 4]                                                               | 341.76 g/mol [3, 4]                                                                          |  |
| Band gap type                 | Indirect [5]                                                                      | Direct [5]                                                                                   |  |
| Band gap energy               | 1.2 eV (experimental) [6]                                                         | 1.65 eV (experimental) [5]<br>1.25 eV (calculation) [2]                                      |  |
| Coordination geometry         | Trigonal prismatic (W <sup>IV</sup> ),<br>Pyramidal (Se <sup>-2</sup> ) [3, 4, 7] | Trigonal prismatic (W <sup>IV</sup> ),<br>Pyramidal (Se <sup>-2</sup> ) [3, 4,7]             |  |
| Crystal structure             | hP6, space group P6 <sub>3</sub> /mmc, No<br>194 [3,7]                            | hP6, space group P6 <sub>3</sub> /mmc,<br>No 194 [3, 7]                                      |  |
| Appearance                    | Grey to black solid [3, 7]                                                        |                                                                                              |  |
| Group                         | Transition Metal<br>Dichalcogenide [7]                                            | Transition Metal<br>Dichalcogenide [7]                                                       |  |
| Spin-orbit splitting          |                                                                                   | 0.47 eV [2]                                                                                  |  |
| Poisson's ratio               |                                                                                   | 0.19 [2]                                                                                     |  |
| Cohesive energy per unit cell |                                                                                   | 15.45 eV [2]                                                                                 |  |
| Charge transfer of W atom     | 0.96 e [2]                                                                        | 0.96 e [2]                                                                                   |  |
| In-plane stiffness            |                                                                                   | 115.52 N/m [2]                                                                               |  |
| Density                       | 9.32 g/cm <sup>3</sup> [3]                                                        | 9.32 g/cm <sup>3</sup> [3]                                                                   |  |
| Melting point                 | 1500 °C [8]                                                                       |                                                                                              |  |
| Exciton binding energy        |                                                                                   | 0.79 eV [9]                                                                                  |  |
| W-Se bond length              |                                                                                   | 2.55 Å [2]                                                                                   |  |
| Dielectric constant (ɛ)       |                                                                                   | Real part (ε1)=~22,<br>Imaginary part (ε2)=~10 (at<br>1.7 eV incident photon<br>energy) [10] |  |
| Effective masses              |                                                                                   | $m_e = 0.53 m_o, m_h = 0.52 m_o$<br>[11]                                                     |  |
| Effective Bohr radius         |                                                                                   |                                                                                              |  |
| Thermal expansion coefficient |                                                                                   | 11.08×10 <sup>-6</sup> /°C [12]                                                              |  |
| Bulk Modulus (B)              |                                                                                   |                                                                                              |  |
| Refractive Index              |                                                                                   | 5.68 [13]                                                                                    |  |
| Carrier mobility in WSe2      |                                                                                   |                                                                                              |  |
| Thicknesses                   | BN/SiO <sub>2</sub> /Si substrate                                                 | SiO <sub>2</sub> /Si Substrate                                                               |  |
| 8 nm                          |                                                                                   | ~350 cm <sup>2</sup> /V.Sec (hole) [14]                                                      |  |
| Monolayer                     | ~31 cm <sup>2</sup> /V.Sec [15]                                                   |                                                                                              |  |
| Bulk                          |                                                                                   |                                                                                              |  |



# Modeling @ GT(Ferroelectrics, Antiferromagnets, Multiferroics, Magnets & their Heterojunctions



#### IEEE-Trans. Electron Devices, 2020



Magnetization Dynamics of a Single-Domain BiFeO3 Nanoisland

IEEE-Trans. Magnetism, 2020





Dynamic Response of BFO/CoFe Heterostructure To appear in Nano Letters



Funded by Intel Co. and SRC

# Looking Ahead (Years 6-10)

- The goal is to promote wider use of process and device simulation tools.
- Work closely with Prof. Vasileska (NCI-SW) and Prof. Register (TNF).
- Offer "Device and Process Simulation Course" developed by Prof. Vasileska at the network level.
- Invited e-seminars on various modeling and simulation topics:
  - Simulation approaches for various research areas
  - Emerging modeling and simulation trends
  - Examples of collaborations among theorists and experimentalists
- Promote and help public release of internally developed modeling/simulation tools

