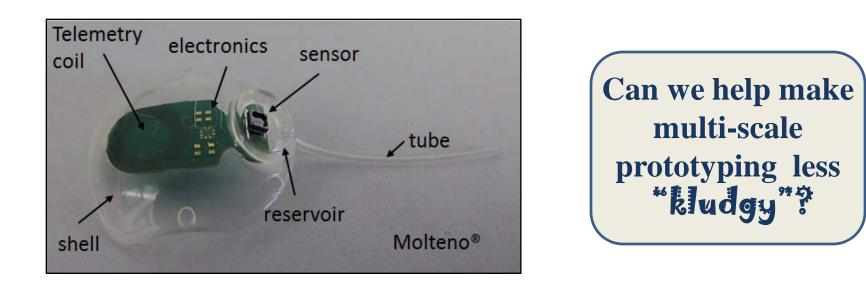
KY Multi-scale Manufacturing and Nano Integration Node

KY MULTISCALE

2017 NSF NNCI Conference University of Penn Oct 16-17, 2017

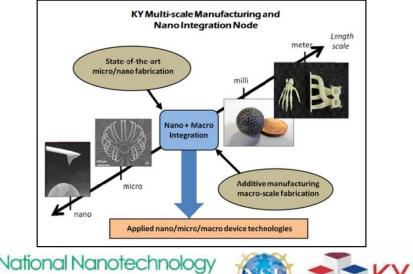
Outline


- 1. Overview
- 2. User Statistics
- 3. Facility Upgrade and New Tool Capabilities
- 4. Research Highlights
- 5. Education and Outreach
- 6. Network Activity
- 7. Panel Discussion Slide

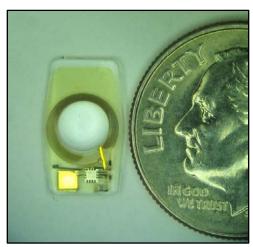
Overview

<u>KY MULTISCALE VISION</u> - The *next generation* of revolutionary products and solutions will require the *combination and effective integration of a diverse set of 3D manufacturing processes,* spanning lengthscales from the nano to meso/macro regimes. Users want *easy access* to these resources to *rapidly and efficiently* fabricate their creative ideas.

Smart ocular shunt prototype


National Nanotechnology Coordinated Infrastructure

MULTISCAL


Site Goals

By leveraging over \$250M of State and NSF EPSCoR investments in state-of-the-art advanced manufacturing equipment and 25 years of expertise in the fields of micro/nanofabrication and additive manufacturing/3D printing, KY MULTISCALE plans to achieve these goals

- **1.** Be a National Center of Excellence for *current and next generation 3D multi-scale manufacturing and integration*.
- 2. Offer a comprehensive set of fabrication and characterization capabilities spanning *nano* to meso/macro regimes.
- 3. Provide technical expertise for users to rapidly and efficiently integrate these processes.

rdinated Infrastructure

Smart IOP lens

Facilities and Personnel

		Micro and Na Technology Ce	no	CeNSE Nanoscale Science and Engineering	Rapi	RPC Rapid Prototyping Center CAMM Center for Advanced Materials			
		EIECTION MICROS Center		KY MMNIP	Center				
		HINCF Huson Nand Core Facilit	o	CAER Center for Advance Energy Research	d Conn Cen Renewable Resea	ter for Energy			
	Kevin Walsh,	Director							
	Todd Hastings	Co-Director	СС	CORE DIRECTORS			CORE MANAGERS		
		Coordinator	Sh	amus McNamara	MNTC & HNCF		ia Aebersold	MNTC & HNCF	
	ADMIN STAFF		Ma	ahendra Sunkara	CCRER		ad Druffel	CCRER	
	Mary Watson &		Th	omas Starr	RPC	Tir	n Gornet	RPC	
	Evgeniya Moiseeva	MNTC & HNCF	То	dd Hastings	CENSE	Jol	nn Craddock	CAER	
	Eunice Salazar	CCRER	La	nce DeLong	CAM	Nic	cholas Briot	EMC	
	Tereza Rohr	RPC	Jo	hn Balk	EMC	Тан	nya Floyd	ASTeCC	
	Alice Marksberry Anna Boyanovsky Tanya Floyd	CAER CENSE ASTeCC	Ro	dney Andrews	CAER	Bri	an Wajdyk	CENSE	

Scale Manufacturing & Nano Integration Node

Key Capabilities

Rapid/Additive Processes Micro- and Nano Fab Unit Processes mask writing, proximity, e-beam melting e-beam & ion-beam + Thin films: + Multiple direct write, induced processing Furnace banks, and grayscale PECVD, LPCVD, 2 RTP systems, Parylene, MVD, lithographies 2x ALD vacuum ovens Cu pillars ____1um . wafer bonding) e-beam lithography aerosol jet 3D printing physical vapor deposition (thermal, metal & polymer e-beam, sputter) two-photon litho laser sintering reactive ion etching (deep, corrosive, cryo) Roll-to-roll Manufacturing stereo litho. 8 meter belt CVD furnace 10-5 10⁻⁹ 10-5 10-4 10-8 10⁻⁹ 10-8 10-7 10⁻⁶ 10-3 10-2 10⁻¹ 10⁰ 10-7 10-6 10-4 10-3 Scale (m) Scale (m) National Nanotechnology coordinated Infrastructure The NSF NNCI Multi-Scale Manufacturing & Nano Integration Node

10⁰

10⁻¹

fused

deposition

modeling

10-2

Key Capabilities

Microscopy and Characterization

Electron microscopy: FEI Helios 660 SEM/FIB, JEOL and FEI TEMs, FEI and Zeiss Environmental FE-SEMs, other FE-SEMs

Atomic force microscopy: Seven Asylum, Veeco, and Agilent microscopes configured for various imaging modes

Materials characterization: x-ray diffractometers, spectroscopic ellipsometers, squid magnetometer (QD MPMS), physical properties measurement system (QD PPMS), XPS and Auger surface analysis, ultrafast optical spectroscopy

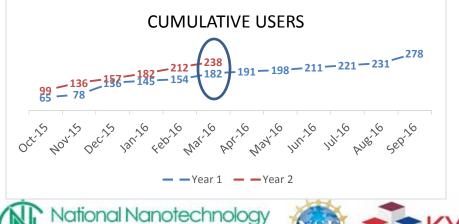
And...

Full Backend Processing

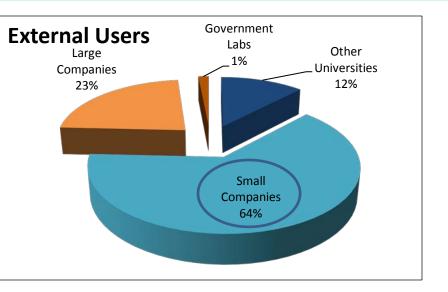
polishing, lapping, dicing, electroplating, XeF2 release, critical point dry, wafer level bonding, laser cutting, etc

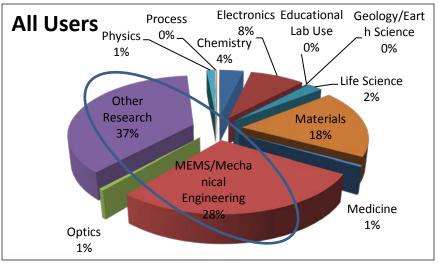
Full Packaging Capabilities

dicing, wire-bonding, flip-chip, die attach, surface mount, custom PCB, etc


Full Testing

ellipsometry, stress measurement, thermal imaging, contact and non-contact profilometry, 4 point probe, CV, high speed imaging, etc




KY MMNIN User Data

Yearly User Data Comparison		
	Year 1 (12 months)	Year 2 (6 months)
Total Users	278	238
Internal Users	163	181
External Users	115 (41%)	57 (24%)
Total Hours	14629	8289
Internal Hours	10384	5892
External Hours	4244 (29%)	2396 (29%)
		\sim
Average Monthly Users	104	141
Average External Monthly Users	24 (23%)	20 (14%)
New Users	111	136
New External Users	26 (23%)	23 (17%)

oordinated Infrastructure

KY MMNIN User Revenue

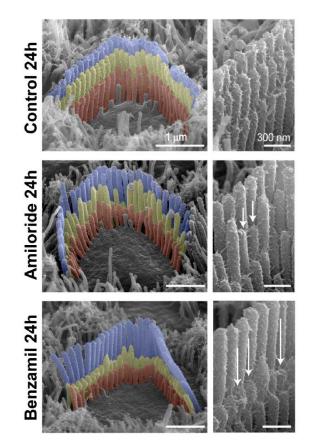
	Year 1	Year 2 (6 months) Year 2 (Projected)
Internal	\$305K	\$219K	\$438K
External	\$414K	\$219K	\$438K
Total	\$719K	\$438K	\$976K

\$1M milestone

Facility Upgrades and New Tool Capabilities

- 1. Primax Vapor HF Release System (NNCI)
- 2. Zortrax M200, Desktop 3D Printer (NNCI)
- 3. MakerGear M2. Desktop 3D Printer (NNCI)

- 4. Nanoscribe 2 Photon 3D Lithography System (pending NNCI purchase)
- 5. Optomec Aerosol Jet System (pending NNCI purchase)
- Acquisition of 10,000 sq ft of AMCC (Additive Manufacturing Competency Center) Space and \$1M of 3D Metal Printers (from UofL Foundation)
- 7. Loan of a Voxel 8 combination metal/plastic 3D Printer (GE First Build)
- 8. CMP System (donated)
- 9. Dual beam FIB/SEM FEI Helios 660 (NSF EPSCOR support)
- 10. Ultra high temperature (1500 C) hot stage upgrade for FEI Quanta FEG
- 11. Leica CPD300 Critical Point Dryer
- 12. Revised and rebranded KY MMNIN NNCI Website KY MULTISCALE
- 13. FOM Integration among our cores


Research Highlights

Research Highlights

- Stereocilia of the inner ear hair cells were imaged using dual-beam FIB/SEM in slice-and-view mode.
- Tension between linked tips in "staircase" essential for normal hearing.
- Tension also produces a continuous influx of calcium (potentially harmful)
- However, Ca²⁺ blocking drugs disrupt the staircase structure → Ca²⁺ influx is essential to preserve structure and thus hearing (Vélez-Ortega et al. eLife 2017)
- Calcium binding proteins are critical for auditory transduction. (Giese et al., Nature Comm. 2017)

Stereocilia staircase imaged with dual-beam FIB/SEM by G. Frolenkov's group at U.K.

Education and Outreach Activities

- 1. UofL and UK <u>NSF REU</u> Programs
- 2. <u>NanoDay</u> Celebration at <u>KY Science Center</u>
- 3. Participated in NSF "Ask a Nano Expert" and "Generation Nano" Initiatives
- 4. Created Nano-nugget videos for NNCO
- 5. Eng Day at UK and UofL
- 6. <u>Summer camps at CeNSE, Conn Center, & MNTC</u>
- 7. Hands on cleanroom demonstrations with students from China University of Mining and Technology
- 8. <u>Women in Engineering workshop</u> for HS students
- 9. Demonstrations for chemistry students from EKU
- 10. Co-sponsored monthly seminars
- 11. Co-sponsored <u>KY Science Center Scientific Proofs</u> gatherings at Mellow Mushroom (*pizza with a* <u>scientist</u>)
- 12. <u>Entrepreneurship Workshop</u> at UK in Prototyping Capabilities
- 13. Renewable Energy Workshops at Conn Center

University of Louisville Interdisciplinary Micro/Nano Manufacturing Program

Cleanroom Experience

Network Activities

- 1. <u>Joint NSF RET</u> Proposal with ASU, GaTech, UofL, Minn and Nebraska
- 2. Sent 10 students to GaTech for <u>NNCI REU</u> <u>Convocation</u>.
- 3. NNCO NanoDay 100B nm Mascot Run

4. Several Subcommittees and Working Groups

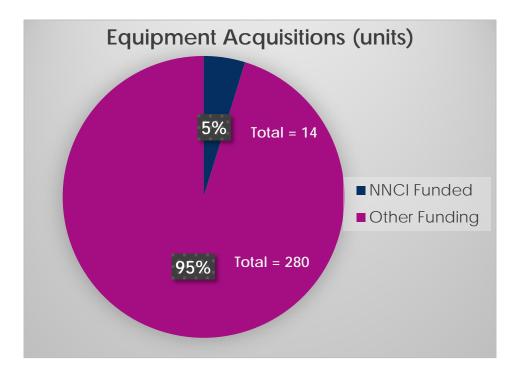
- 1. Building the User Base
- 2. E-beam Lithography Group
- 3. New Equipment and Research Opportunities
- 4. Workforce Development
- 5. International Relations
- 6. Entrepreneurship and Development
- 7. MEMS/Sensors Research Area
- 8. Vendor Relations and Outreach/Education
- 9. Additive Manufacturing Technical Working Group
- 10. Lithography Technical Working Group
- 5. Japanese NNCI/NIMS Graduate Exchange Program
- 6. Staff attended Dry Etch Workshops at Cornell
- 7. Advertising Booth at <u>TechConnect in DC</u>; helped man the NNCI booth.
- 8. NSF/NBC Learn "Science of Innovation" Videos

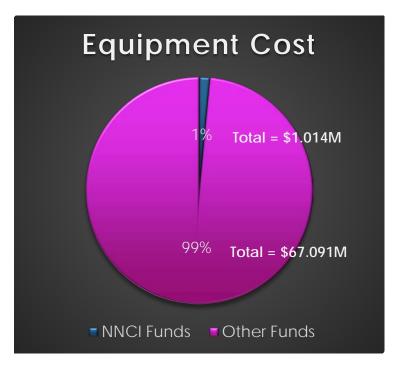
Episode 5. Micro-Fabrication for Cochlear Implants

Angelique Johnson is the CEO of MEMStim, a company that is innovating how electrode arrays in cochlear implants are manufactured. Using automated micro-fabrication, instead of costly hand-made manufacturing, Johnson is able to lower the cost of production, allowing more people in need of implants to afford them.

View video (5:02 min.)

ANCELIQUE JOHNSON MENSINUL

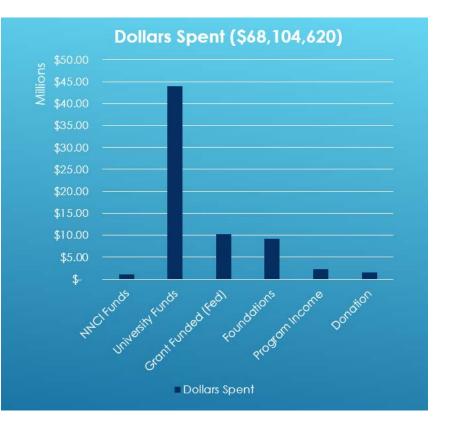

PANEL SLIDE



Panel Discussion Topic

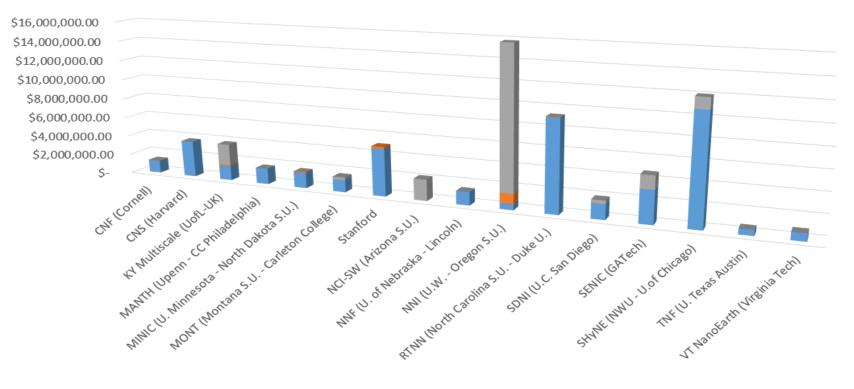
Resource Allocation and New Equipment Acquisition – How do new and established user facilities plan for long-term replacement and for new acquisitions?

294 tools acquired by the 16 sites since the start of NNCI


Total = \$68,104,620

Panel Discussion Topic

294 Tools for a Total of \$68,104,620



Panel Discussion Topic

294 Tools for a Total of \$68,104,620

Equipment Cost

■ University Funded ■ Donation ■ Grant/Other

EXTRA

Research Focus Areas

Top Down 3D Integration Challenges (macro/meso to micro – next gen AM)

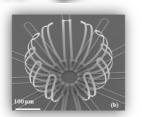
- New 3D multi-scale manufacturing techniques and integration (3D MSMI) strategies
- Printing conductive interconnects on highly non-planar AM surfaces
- Integrating *micro-fluidics* with AM and 3D printing
- Strategies for *embedding* sensors, electronics and components inside AM products
- 3D printed *electronic, optical, biological, and sensing* materials
- 3D MSMI design for manufacturability (DFM)

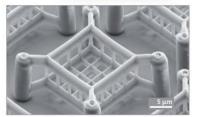
Bottom Up 3D Integration Challenges (nano/micro to meso)

- Self-assembly and **3D patterning at the nano-level**
- Focused e-beam induced processing in liquids
- Two-photon additive manufacturing
- Grayscale for generating 3D topologies
- 2D to 3D self-assembly using released stress-engineered films
- Strategies for fabricating 3D MEMS bistable elements (no-power MEMS) •
- Custom characterization tools for the nano/micro regime •

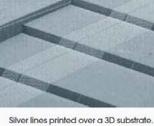
Materials, Design and Integration Challenges

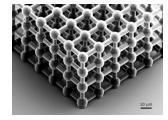
- New materials for additive manufacturing (AM) and 3D printing
- Integrated and mixed AM layers for achieving specific functionality
- Smart materials
- AM strategies to *improve resolution*
- Software development for AM and MSMI


20 micron spots)


Figure 3 Maskless Lithographic generated Cu/LCP tem

Feb gel (a)





Biocompatible cell scaffold. Courtesy of T. Striebel, M. Bastmeyer, CFN, KIT (Germany)

Scale Manufacturing & Nano Integration Node

