NNCI Computation

Azad Naeemi Georgia Institute of Technology azad@gatech.edu

Modeling and Simulation

- Modeling and simulation can enhance nanoscale fabrication and characterization:
 - guide experimental research
 - drastically reduce the required number of trial and error iterations
 - enable more in depth interpretation of the characterization results
 - help quantify the true potential value of the fabricated devices

2

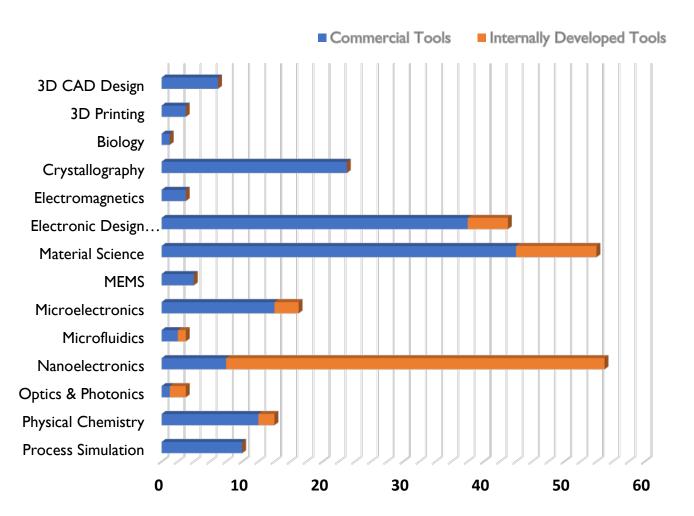
Current Status

- Abundance of resources and expertise at various sites even though few sites proposed any activities.
- Diverse funding sources for development and maintenance of these resources (inadequate in many cases).
- Ad hoc access and documentation.
- Many gaps and deficiencies.
- Duplicate efforts happen.

NNCI Computation

Objectives:

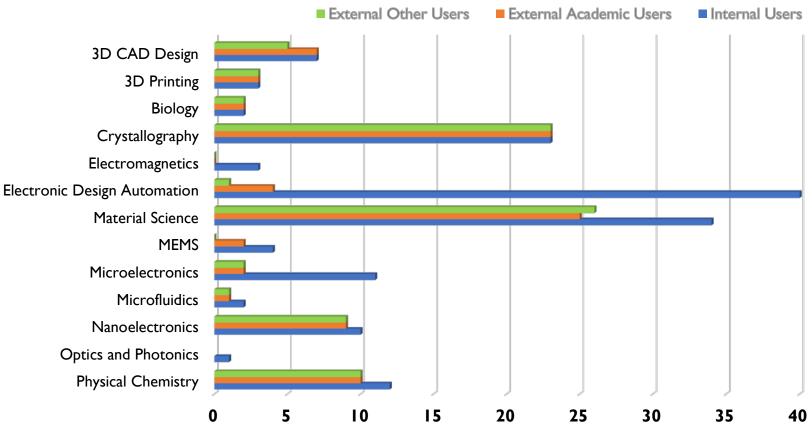
- To facilitate access to the modeling and simulation capabilities and expertise within NNCI sites.
- To identify the strategic areas for growth in modeling and simulation
- To promote and facilitate the development of the new capabilities.


An inventory of available modeling and simulation resources and expertise is being complied. The directory is hosted by nanoHub.org.

So far, 10 sites have reported collectively more than 65 commercial simulation tools and 40 internally developed simulation tools available for internal and/or external users (with and without fee).

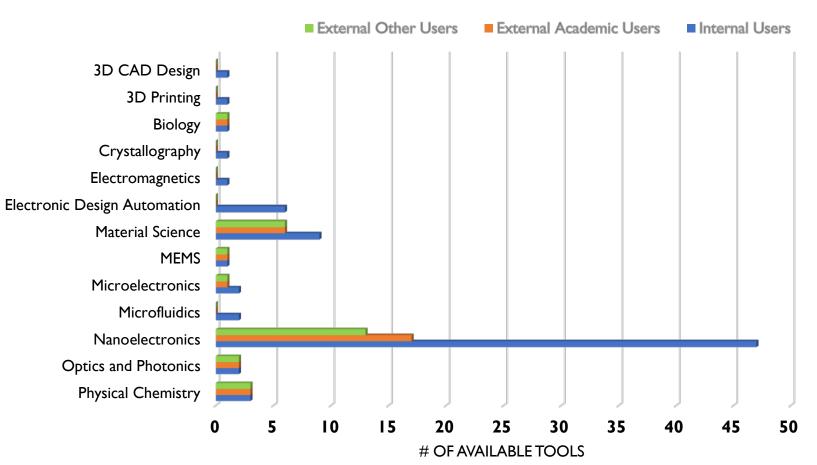
8 supercomputers or major computing clusters are available in various sites.

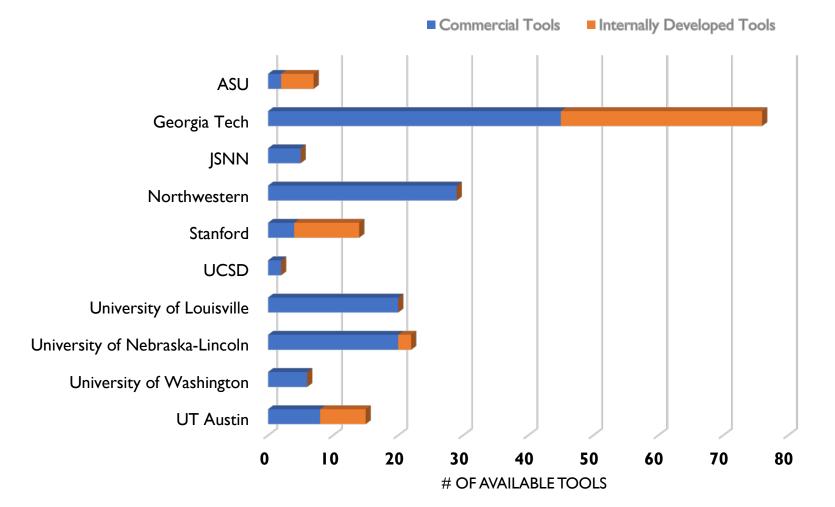
Statistics by Disciplines


OF AVAILABLE TOOLS

Permission to Access: Commercial Tools

Commercial Tool Availability


OF AVAILABLE TOOLS


Permission to Access: Internally Developed Tools

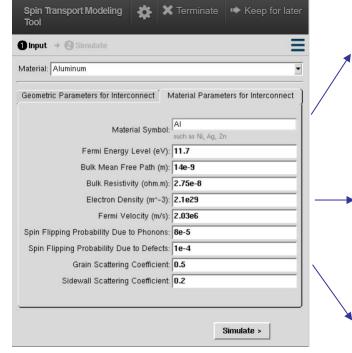
Contributing Universities

NNCI Computation Group Page on nanoHUB

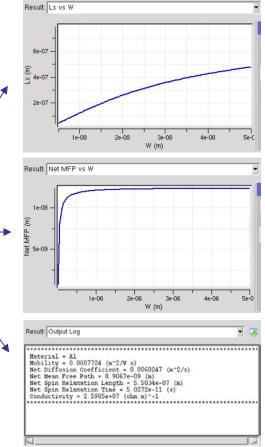
nanohub.org/groups/nnci_computation

<u>manonab.o</u>		
- 1 2		
ဒိုတို့ nanoHUB	RESOURCES EXILORE NANOHUBU RARTHERS COMMUNITY ABOUT SUPPORT Logged in Help Search	Download EXERcise
		Show 50 V entri
		Category
	NNCI Computation	Category
	ORCOVERABILITY VISIBLE 3014 POLICY RESTRICTED CREATED IN DIC X08	3D CAD design
	CREATE AND THE AND ALL PRESERVED. CREATED IN DR. 200	3D CAD design
		3D CAD design
National Nanotechnology		3D CAD design
Coordinated Infrastructure	Overview	3D CAD design
Group Manager: *	consultational nurselectrocks nanoucence simulation and modeling	3D CAD design
Cverview	Constructional construction and interconting and indicating	3D printing
		3D printing
I. Members i	National Nanotechnology	3D Printing , Physica
77 Announcements	Coordinated Infrastructure	Biology, Physcial ch
(D) Hog		Crystallography
III. Calendar	The NNCI is an NSF funded program comprised of 16 sites, located in 17 states and involving 29 universities and other partners. This national network	Crystallography
uz Calendar	provides researchers from academia, government, and industry with access to university user facilities with leading edge fabrication and characterization tools. Instrumentation and expertise within all disciplines of nanoscale science, engineering, and technology. Research undertaken within NNCI facilities is	Crystallography
III Collections	incredibly broad, with applications in electronics, materials, biomedicine, energy, geosciences, environmental sciences, consumer products, and many more.	Crystallography
Torum	The toolsets of sites are designed to accommodate explorations that span the continuum from materials and processes through devices and systems. There are micro/nanofabrication tools, used in cleannoom environments, as well as extensive characterization capabilities to provide resources for both top down	Crystallography
# Projects	and bottom up approaches to nanoscale science and engineering.	Crystallography
	For more information about NNCI, please visit NVCI website.	Crystallography
Resources	Modeling and simulation play a key role in enhancing nanoscale fabrication and characterization as they guide experimental research, reduce the required	Crystallography
di Usage	number of trial and error iterations, and enable more in depth interpretations of the characterization results. Various NNCI sites provide a diverse set of software and hardware resources and capabilities that, if made readily accessible, can greatly help and even expand the NNCI user community. A collective.	Crystallography
CD WRI	inventory of modeling and simulation resources and capabilities across NNCI sites is provided in this database with helpful information such as a point of	Crystallography
0 Wish List	contact for each tool, acresis restrictions, and academic citations.	Crystallography
	Access to commercial tools available through various sites might be limited by their licenses. For instance, some might be available only to internal or academic users. Internally developed tools typically come with fewer restrictions. However, these tools have been developed with limited funding from	Crystallography
ff Citations	various sources and may lack a professional user interface, documentation, or robustness. Executable versions of some tools may not be even publicly	Crystallography
(b) Files	available at this point. The point of contact (mainly the PI) for each internally developed tool is provided to facilitate potential collaborations. However, the PIs may not have the resources to respond to all inquiries. The NNCI Coordinating Office at Georgia Tech will continue to update and expand this database.	Crystallography
Activity 47	work with the Pis to facilitate access to the resources, and explore ways to address the computational needs of the community.	Crystallography
	For NNCI Modeling/Simulation Tools List, please visit here.	Crystallography
	For general questions or comments please contact Azad Naeemi (azad@gatech.edu).	Crystallography
		Crystallography
	000	Crystallography
	WINACY POLICY ABUSE POLICY LICENSING CONTENT COPYRICHT BITIINCEMENT	Crystallography, Ma
	PREMISE PARKET ABADE POLICE LICENSING CONCENT. COPPECHE REPERCENTER.	Electromagnetics
	conversion of sign 2 works	Electromagnetics
		Electronic design au
		Electronic design au

INNCI Modeling/Simulation Tools List


Show 50 V entries		First Previous 1 2 3 4 Next Last			
Category	* Tool °	Description			
Category	Tool	Description			
3D CAD design	Solidworks	Comprehensive solid modeling design and simulation software			
3D CAD design	Rhino	Freeform modeling software			
3D CAD design	Intralattice	Generative Lattice Design for Rhino			
3D CAD design	Autodesk Fusion 360	Comprehensive solid modeling design and simulation software			
3D CAD design	Solidthinking inspire	Topology optimization			
3D CAD design	Ansys	Computer-aided engineering software			
3D printing	MAGICS	3D printing part manipulation and fixing			
3D printing	Autodesk Meshmixer	3D printing file manipulation and fixing			
3D Printing , Physical chemistry	Autodesk Within	Lattice/Cellular structure design and simulation for 3D printing			
Biology, Physcial chemistry	Lammps*	Opensource package for molecular dynamics simulations primarily designed for b			
Crystallography	TOPAS	Rietveld, XRD analysis			
Crystallography	LEPTOS - old version	Rietveld, XRR analysis			
Crystallography	MULTEX	Rietveld, pole figure analysis			
Crystallography	EVA	Rietveld, x-ray diffraction data processing			
Crystallography	PDXL 2	Rietveld, crystallite size and strain analysis, Residual stress, %Crystallinity, RIR quar			
Crystallography	NANO-Solver 3	SAXS analysis of nano particle/pore			
Crystallography	Global fit 2	X-ray reflectivity and Rocking curve analysis of thin films			
Crystallography	3D Explorer	For processing of basic 2D data, pole figure and reciprocal maps			
Crystallography	Apex 3 suite	Single crystal diffraction data analysis and structure solution)			
Crystallography	High Score Plus	Rietveld, Phase ID, phase quantification			
Crystallography	Data Viewer	PANalytical, x-ray diffraction data processing, size			
Crystallography	CaRine v 3.1	Molecular visualization and crystallography tools			
Crystallography	Diamond v 3.2	Molecular visualization and crystallography tools			
Crystallography	PROJECT/SAED2s	Simulation and analysis of electron diffraction (spot) patterns			
Crystallography	PROJECT/PCED2s	Advanced simulation of PCED (ring) patterns and phase identification			
Crystallography	PROJECT/SPICA	Stereographic projection for interactive crystallographic analysis			
Crystallography	JECP/SVAT	Structural viewer and analytical tool			
Crystallography	JECP/HOLZ2a	Simulation of HOLZ pattern, including dynamical correction			
Crystallography	JECP/SAKI	Simulation analysis of Kikuchi lines and double diffraction effect			
Crystallography	Reciprocal Net	Crystallographic information repository			
Crystallography	Platon	Tool for crystallographic analyses			
Crystallography	Encifer	Safely check and edit crystallographic information files (CIFs) without compromisin			
Crystallography, Material science	Mercury	Visualization of structures/molecules			
Electromagnetics	Antenna Magus	1. A software tool to help accelerate the antenna design and modelling process 2.			
Electromagnetics	HFSS/Electromagnetic Suite	The industry standard for simulating 3-D, full-wave, electromagnetic fields			
Electronic design automation	Power Delivery Network Analysis tool	Thermal electrical co-simulation framework especially for 2.5D and 3D ics			
Electronic design automation	Power Delivery Network Modeling	Power Integrity analysis based on Huang Gang's work			
Electronic design automation	Thermal Simulation tool for 2.5D and 3D ics	Thermal modeling tool which can perform both steady-state and transient therma			
Electronic design automation	Abaqus	A software package for Computer-aided engineering and Finite Element Analysis			
Electronic design automation	Q3D Extractor	The premier 2-D and 3-D parasitic extraction tool for engineers designing electronic			
Electronic design automation	SIWave	A specialized design platform for power integrity, signal integrity and EMI analysis			

Spintronic Transport Modeling Tool


nanohub.org/tools/spintransport/

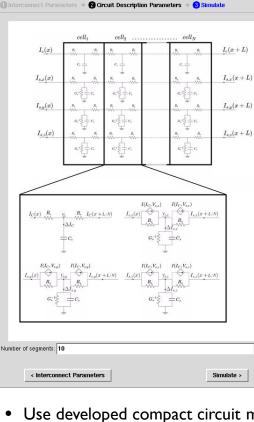
Spin Transport Modeling Tool	*	×	Terminate	e 🕩 Ke	ep for later		
) Input + (2) Simulate							
Material: Aluminum					•		
Geom Copper Other							
Width (m): 5e-8 Thickness (m): 5e-8							
(,)							
				Simulate	>		

• Choose right material for your interconnect

• Use predetermined material parameters **OR** use your own

• Obtain electron-spin transport physics-based simulation results

SPICE Subcircuit Netlist Generator for Spintronic Nonmagnetic Metallic Channel


SPICE Subcircuit Generator for Spintronic Nonmagnetic Metalli Channel Components

nanohub.org/tools/spincircuit/

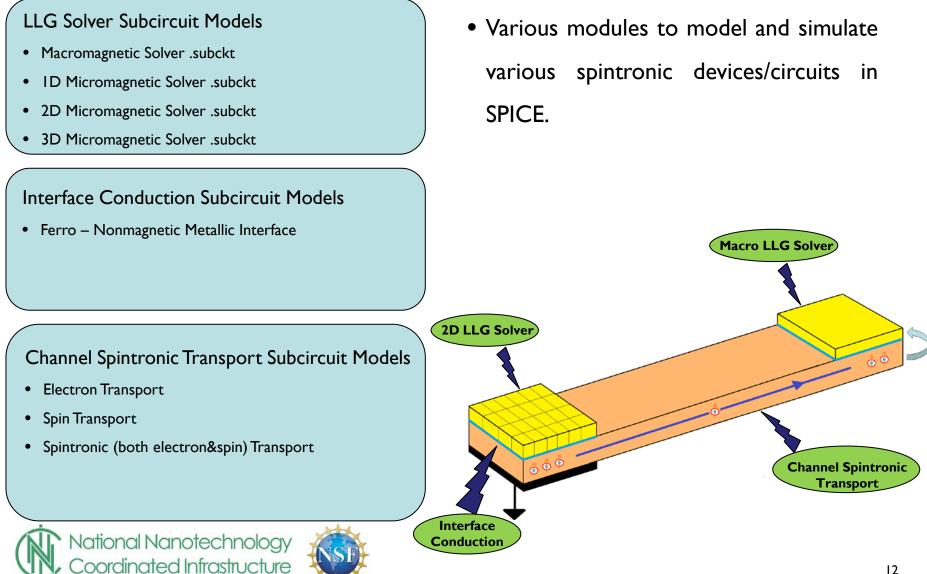
	C		
_	Copper Aluminum		
	Copper		
	Other		
		Cu	
	Material Symbol:	such as Ni, Ag, Zn	
	Fermi Energy Level (eV):	7	
	Bulk Mean Free Path (m):	40e-9	
	Bulk Resistivity (ohm.m):	1.7e-8	
	Electron Density (m^-3):	8.5e28	
	Fermi Velocity (m/s):	1.57e6	
Snin El	ipping Probability Due to Phonons:		
	lipping Probability Due to Defects:		
opinii	Grain Scattering Coefficient:		
	-		
	Sidewall Scattering Coefficient:	0.2	

 Choose right material for your interconnect

🔆 🗙 Terminate 🛛 🍽 Keep for lat

+ -

 Use developed compact circuit model for spintronic transport

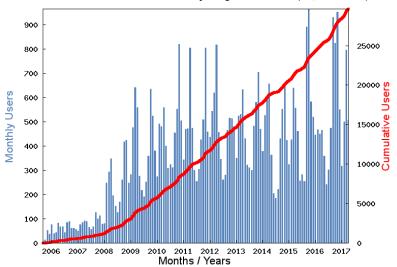


Interconnect tober	L4
*Channel Subcircuit	
.subckt interconnect	
+ vc0 vcL vx0 vxL vy0 vyL vz0 vzL	
+ vc_gnd vx_gnd vy_gnd vz_gnd	

*Drift-Diffusion Channel Circuit Model	
xcell1 vc0 vc1 vx0 vx1 vy0 vy1 vz0 vz1 vc_gnd vx_gnd vy_gnd vz_gn	t cell
ccell2 vcl vc2 vx1 vx2 vy1 vy2 vz1 vz2 vc_gnd vx_gnd vy_gnd vz_gn	d cell
ccell3 vc2 vc3 vx2 vx3 vy2 vy3 vz2 vz3 vc_gnd vx_gnd vy_gnd vz_gn	d cell
ccell4 vc3 vc4 vx3 vx4 vy3 vy4 vz3 vz4 vc_gnd vx_gnd vy_gnd vz_gn	i cell
scell5 vc4 vc5 vx4 vx5 vv4 vv5 vz4 vz5 vc and vx and vv and vz an	i cell
xcell5 vc4 vc5 vx4 vx5 vý4 vý5 vz4 vz5 vc_gnd vx_gnd vý_gnd vz_gn xcell6 vc5 vc6 vx5 vx6 vy5 vy6 vz5 vz6 vc_gnd vx_gnd vy_gnd vz_gn	d cell
xcell/ ycb yc/ yxb yx/ yyb yy/ yzb yz/ yc and yx and yy and yz an	1 Cell
xcell8 vc7 vc8 vx7 vx8 vv7 vv8 vz7 vz8 vc and vx and vv and vz an	d cell
xcell9 vc8 vc9 vx8 vx9 vý8 vý9 vz8 vz9 vc_gnd vx_gnd vy_gnd vz_gn xcell10 vc9 vc10 vx9 vx10 vy9 vy10 vz9 vz10 vc gnd vx_gnd vy gnd	d cell
. xcell10 vc9 vc10 vx9 vx10 vy9 vy10 vz9 vz10 vc_gnd vx_gnd vy_gnd	z_gnd cell
***************************************	**********
- In Antonio - A	
.ends interconnect	
Result: cell .sbckt	-
	2.5
*Single Cell Subcircuit	
.subckt cell	
+ vc+ vc- vx+ vx- vy+ vy- vz+ vz-	
+ vc_gnd vx_gnd vy_gnd vz_gnd	

*Parameters	
*Spin Transport Parameters	
.param mu=0.0016096	
.param D=0.0075113	
*Spin Circuit Parameters	
.param Relec=0.68439	
.param Celec=1.2949e-18	
.param Rspin=0.68439	
.param Cspin=5.4711e-13	
.param Gspin=0.069804	

***************************************	*****
*Drift-Diffusion Segment Circuit Model	
*Charge Current	
R_c1 vc+ vc+_t 'Relec'	
V_C1 VC+_t VC DC U	
R_c2 vc vc_t 'Relec'	
V_c2 vct vc- DC 0 C_c vc vc_gnd 'Celec'	
u_c vc vc_gnd 'uelec'	
*Spin_x Current	
R_x1 vx+ vx 'Rspin'	
$B_x1 vx + vx I = (nu/D) * I (\Psi_c1) * (\Psi(vx) - \Psi(vx_gnd))$	
R x2 vx vx- 'Rspin'	
$B_x^2 vx vx - I = (nu/D) * I (\Psi_c^2) * (\Psi(vx) - \Psi(vx_gnd))$	
C_x vx vx_gnd 'Cspin'	
R x vx vx gnd '1/0spin'	
*Spin_y Current	
R y1 vy+ vy 'Rspin'	
B_y1 vy+ vy I=(mu/D)*I(V_c1)*(V(vy)-V(vy_gnd))	
R_y2 vy vy- 'Rspin'	
R_y2 vy vy- 'Rspin' B_y2 vy vy- I=(au/D)*I(Ψ_c2)*(Ψ(vy)-Ψ(vy_gnd)) C_y vy vy_gnd 'Cspin' R_y vy vy_gnd 'I/6spin'	
uy vy vy_gna 'uspin' Prana martin'	
r_y vy vy_gna _1/0spin'	
"spin_z currenc	
R_z1 vz+ vz 'Rspin'	
B_z1 vz+ vz I=(mu/D)*I(V_c1)*(V(vz)-V(vz_gnd)) R z2 vz vz- 'Rspin'	
$n_{22} v_2 v_2 = n_{2} p_1 r_1$	
B_Z2 VZ VZ- I=(MU/D)*I(V_C2)*(V(VZ)-V(VZ_gnd)) C z vz vz ond 'Csnin'	
C z vz vz and 'Cspin'	
C z vz vz ond 'Cspin'	*****
C_z vz vz_gnd 'Cspin' R_z vz vz_gnd '1/8spin' T	
] 5 22 vz vz − 1 «(mu/D) +(V(vz) + (V(vz) −V(vz_gnd)) Cz vz vz_gnd '(Sepin' R z vz vz_gnd '1/6spin' 	****


Recult interconnect sheld

• Obtain SPICE subcircuit netlist describing spin&electron transport in channel

Full Spintronic Device SPICE Netlist Generator on nanoHUB

Simulation Tools from ASU

Users of Simulation Tools Authored by Dragica Vasileska (29,643 Users)

#	Tool Name	Users served in last 12 months	Simulation Runs in last 12 months	Total users served	Total Simulation Runs	Cita tions	Published On
1	Cu in CdTe Lab (2D Version)	<u>39</u>	152	50	214	-	12 Jul 2016
2	Cu in CdTe Lab	14	35	53	204	1	17 Feb 2015

NNCI Hardware Resources

8 supercomputers or major computing clusters are available in various sites.

All serve internal uses only with the exception of the UT-Austin computing cluster.

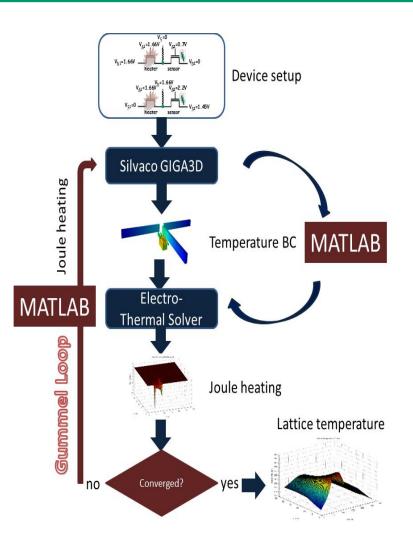
Example :

Partnership for an Advanced Computing Environment (PACE)." at GT

More than 50,000 cores and more than 8 Petabytes of storage used by approximately 3000 faculty and graduate students.

PACE is funded through a mix of central and faculty funding.

External users need to fund or collaborate with internal users.



External Use of ASU Computing Cluster

- Two International Collaborations with Prof. Vasileska
- Katerina Raleva UKIM, Macedonia: Multiscale modeling of self-heating effects in heater – sensor combination of MOSFETs
- Gilson Wirth/Alan Rossetto UFRGS, Brazil: Modeling of NBTI in p-channel MOSFETs

National Nanotechnology Coordinated Infrastructure

Multi-scale thermal solver

Process Simulation Tools

- Can greatly help users and staff and cut cost.
- Enable in depth analysis and variability studies
- Fabrication complexity is growing and user experience is decreasing.
- Not widely used by users.

- Plan to hold hands-on workshops to promote "Simulate before Fabricate"
- Possible option:
 - Sentaurus TCAD: Fabrication steps: oxidation, diffusion, implantation, etc., Deposition Steps: PVD, CVD, PECVD, etc., Etching processes: Wet etch, RIE, CMP, etc.

