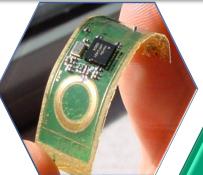


Cornell NanoScale Facility

Prof. Claudia Fischbach-Teschl, Co-Pl, Assoc. Director

Lynn Rathbun, Ph.D. Laboratory Manager

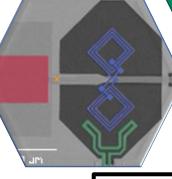
- We are a uniquely capable nanofabrication facility within NNCI
- Site of strong, active biology, physics, electrical engineering and materials research activities
- Educator of the next generation of interdisciplinary engineers and scientists
- Engine of economic development
- Provider to large external user community (~40%)
- >40 years of experience as a successful user facility focused on nanofabrication
 - New strategic directions and activities


Addressing NSF's 10 Big Ideas on Data Revolution, Quantum Leap, Convergence, Rules of Life, Future of Work, ...

_

CNF Strategic Focus

Quantum **Information Devices**



2D Materials

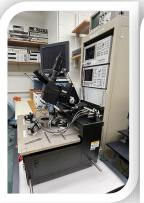
integration

3D Fabrication and Characterization

- **Understanding the Rules of Life**
- **Transform Quantum/Quantum Leap**
- **Nano-Enabled Internet of Things**

New Facilities 1

New Partnerships with Existing CU Facilities to Bring New Capabilities into CNF and NNCI


High Frequency Test Lab

Existing Equipment

- DC probe station and electronics
- Microwave probe station
- "Load Pull" RF test station

Applications:

Heterointegration and Quantum Device Testing

MRI 2021- mm wave network analyzer

- Ultrawide band vector network analyzer
 - One of the first in the world
 - Single sweep DC to 220 GHz
- Automated Probe station
 - 1 μm precision
 - Thermal chuck

New Facilities 2 & 3

Cornell Visualization and Imaging Partnership (CVIP)

- CNF and the Cornell Institute of Biotechnology (Biotech) have partnered to create a shared Life Science characterization and imaging facility.
- CNF users will access a broad range of 3-D characterization tools including a variety of confocal microscopes, superresolution microscopes, and micro/nano-xray-CT scanning.

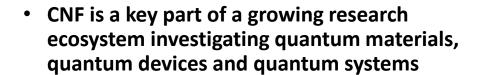
Cornell Multiscale 3D Fabrication Partnership (CM3FP)

- CNF has partnered with the Cornell Mechanical Engineering department's Rapid Prototyping Lab to make a broad range of 3-D printing technologies available to our users.
- CNF and RPL staff will act as a gateway to these new 3-D printers, providing consultation, software services, design help, billing, and user support.

Research Community

Understanding the Rules of Life

Quantum Science at CNF and Cornell

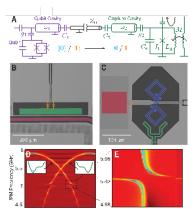

Cornell Nanoscale Facility

- High purity materials deposition/etch
- New tools (e.g. atomic layer etch)
 - Heterointegration and packaging

High Energy Synchrotron Source

- High Magnetic Field (HMF) beamline
- Study quantum materials in persistent magnetic fields

 Provides nanofabrication, heterointegration and packaging while partnering with centers supporting quantum research


CCMR MRSEC

- Materials, Characterization and Theory
- World leading electron microscopy
- Quantum light sources and quantum sensing of materials

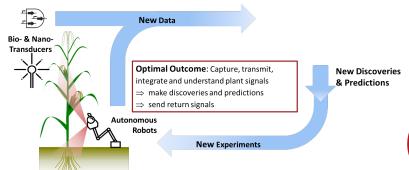
2D Materials MIP

 New interface materials—that do not exist in nature

Research Community

Transform Quantum/Quantum Leap

Global Quantum Leap (AccelNet – a network of networks)



New Center Partner Digital Agriculture STC

Center for Research on Programmable Plant Systems (CROPPS)

The CROPPS STC will generate a new paradigm for observing, recording, and modulating plant responses to their environment—the Internet of Living Things (IoLT).

Research Community

Nano-Enabled Internet of Things

Image: Meagan Lang, Kelly Robbins, Amy Marshall-Colon

New Equipment

New Equipment Highlights

- UHV Load Locked Evaporator (Angstrom Eng.)
 - In-situ ion beam cleaning
 - GLAD (Glancing Angle Deposition) with rotation, and sample heating
- Savannah Atomic Layer Deposition Sys. (Veeco)
 - Al, Pt, Pd, and Ru
 - Ozone generator
- HDP-PECVD System (Plasma Therm)
 - High density SiO₂, Si₃N₄, a-SiC, and a-Si films at low temperatures
- Spectroscopic Ellipsometer (Woollam)
 - Measuring thin film thicknesses and optical constants of multilayer thin film stacks
 - Parallel detection for rapid measurement and full wafer mapping of film properties
- Dektak Profilometer (Brucker)
 - 4Å repeatability
 - Can process up to 200mm wafers
 - 3D mapping

